Architecture Analysis
Research Project Status

Don Ohi, L-3 Communications
Chris Walter, WW Technology Group
Jim Dabney, L-3 Communications

This presentation consists of general capabilities information that does not contain controlled technical data as defined within the International Traffic in Arms (ITAR) Part 120.10 or Export Administration Regulations (EAR) Part 734.7-11
Overview

- Architecture IV&V
- Architecture Analysis Research Elements
 - Architecture Perspectives
 - Topics for analytical investigation
 - Views for improving architecture specifications
 - Architecture Analysis Framework
 - Tailorable set of architecture analysis objectives
 - Methods for accomplishing objectives
Impact of Architecture Phase IV&V

- Architectural issues are a leading source for integration problems.
- Without systematic upfront analysis, these problems are costly to repair.
- Application of complexity, safety, and dependability analysis enables addressing the issues early on.
- Architectural decisions impact what is required of the software.
- Improved architecture specifications reduce software risk and increase IV&V’s ability to validate and verify the software.

September 16, 2010
Frameworks

DoDAF 2.0

ATAM

Representation

Evaluation

September 16, 2010
<table>
<thead>
<tr>
<th>View</th>
<th>Section</th>
<th>Comments</th>
</tr>
</thead>
</table>
| OV-2 | 3.1.1 | - Operational resource flow description
- Not complete in current version
- Map to operational scenarios (also not complete)
- Hierarchical or mission phase views |
| OV-3 | 3.2 | - Operational resource flow matrix
- Decomposed by mission phase and needline type
- Limitations of OV-2 make OV-3 completeness assessment difficult
- Many TBD |
| OV-5 | 3.4 | - Operational activity model
- Presented via activity diagrams and flowcharts
- Some activities (e.g. build process) missing OV-3 antecedent
- IDEF0 notation is recommended due to more complete activity description
- More complete set of scenarios recommended |
| SV-1 | 4.1 | - System interface description
- Systems and interfaces to realize OV-2
- Levels of specification management in CSADD could be improved |
| SV-2 | 4.2 | - Systems communication description
- CSADD will require more detail |
| SV-6 | 4.3 | - Systems data exchange matrix
- Tabular characterization of data form SV-1 and SV-2
- CSADD contains abridged SV-6 |
CSADD Tailoring Analysis

- CSADD based on DoDAF 1.0
- Some sections explicitly mapped to DoDAF
- Tailored-out views which would help
 - AV-1 Executive Summary
 - AV-2 Integrated dictionary (partially tailored)
 - OV-6 Operational activity sequence & timing
 - Significant weakness
 - SV-4 Systems functionality description
 - Systems version of OV-5
CSADD Compliance with DoDAF 2.0

- Activities replace operational nodes – impacts operational viewpoints
- More hierarchical OV-2 would facilitate traceability analysis
- Adoption of service-oriented approach (SvcV replacing SV) recommended
- Used emergency voice as test case
 - Generally, not enough detail provided
 - Example: emergency voice software not differentiated from primary voice
Verifiability

- Features of the architecture are mapped to requirements, which are then mapped to the verification tests that verify them
 - All components have requirements that are tested
 - All component interfaces have specified requirements that are mapped to verification tests
 - All critical scenarios coverable/covered by test cases
- Technical budgets, budget allocations, and compliance to budgets expressed in observable/measurable terms
- Risks noted for untestable capabilities, services, interactions, and scenarios and a risk mitigation approach using simulation and analysis planned
Managing Levels of Specification

- This perspective is concerned with managing
 - Properties of a system as a whole
 - Properties that are allocated to the parts from which it is composed
- Document descriptions are information subsets (i.e. abstractions) that need to fit in an organized hierarchy
- Assessing levels of specification can:
 - Detect misalignment of levels of specifications (e.g. semantics)
 - Gaps in interfacing stakeholder/developer abstractions (e.g. omissions)
 - Potential system integration issues (e.g. pattern errors)
Levels of Specification and Multiple Objectives

- The primary objectives of a system should leave many degrees of freedom for design open
 - Detect stakeholder biases that introduce artificial constraints on downstream tradeoffs
 - Requirements that bias the problem space
 - Implementations that bias the solution space
- Downstream options are then eliminated on the basis of the secondary objectives of the work system
- In many systems, the primary objectives, secondary objectives, and external constraints are often conflicting
- Objectives, like safety or fault tolerance, can have conflicting implementations (e.g. “do nothing” may be safest!)
Levels of Specification and Safety Example

- When objectives, like safety or fault tolerance, have conflicting implications it was unclear in the CSADD how conflicts were resolved.
- There is a risk that system level requirements like safety may merely be specified as measures of goodness at a component level.
- Need to determine if interpretation of safety is consistent at different levels of specification and among system stakeholders.
- Need to determine if an implementation can compromise a critical objective when mixed with other factors (either critical/non-critical).
 - E.g. scheduling of critical communications over a shared network or writing to a shared database.
IV&V Architecture Analysis Tasks

<table>
<thead>
<tr>
<th>Completeness</th>
<th>Verifiability</th>
<th>Levels of Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification completeness</td>
<td>Reuse Analysis</td>
<td>Levels of specification identification</td>
</tr>
<tr>
<td>Functional Capability Mapping</td>
<td>Interface requirements traceability analysis</td>
<td>Stakeholder analysis</td>
</tr>
<tr>
<td>Dependency mapping analysis</td>
<td>Key driving requirements validation</td>
<td>Evolvability analysis</td>
</tr>
<tr>
<td>Technical budgets analysis</td>
<td></td>
<td>Comparison to lower level architecture specifications</td>
</tr>
<tr>
<td>Top-level requirements mapping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenario development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault management and redundancy analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IV&V Techniques

- **Specification Completeness**
 - DoDAF content checklists
- **Levels of Specification Identification**
 - Keyword and phrase pattern search vertically through document tree
- **Scenario analysis**
 - Scenario modeling, and simulation and test
- **Fault Management and Redundancy Analysis**
 - Error propagation analysis and containment
 - Coupling analysis
- **Technical budgets Analysis**
 - Budget identification from ADD and document tree
 - Analyze budget allocation, feasibility
- **Mapping Tasks** (Functional Capability Mapping, Dependency Mapping Analysis, I/F Requirements Traceability Analysis, Top-level Requirements Mapping)
 - Quality function deployment (QFD) matrix
Tool Support Opportunities

- Smart keyword search
- Budget mapping tool
- Scenario visualization and testing
- Tracing tools (implement QFD House of Quality)
Architecture Analysis Tailoring

- Involves selecting project-applicable tasks
- Guided by project manager’s tailoring goals
 - Breadth vs. depth
 - Comprehensive vs. limited
- Driven by many factors
 - Overall system criticality and risk
 - Architecture style (DoDAF, 4+1, etc)
 - Mission type/System type
 - Development approach
 - Development phase
 - Artifact availability and maturity
 - Task dependencies
Summary

- Architecture IV&V essential
- CSADD-inspired ADD improvements
 - Completeness
 - Verifiability
 - Levels of abstraction
- IV&V architecture methodologies
 - Ideal task set covers all aspects of architecture
 - Techniques achieve tasks
 - Tools facilitate and automate techniques