
Integration Analysis via

Software Architecture Verification

A Multi-Dimensional ApproachA Multi-Dimensional Approach

Presented by:

Dan Sivertson

NASA IV&V Facility

Fairmont, WV

16 Sep 2010

Overview

• Orion Crew Exploration Vehicle

• NASA Software IV&V Technical Framework excerpts pertaining to Software

Architecture/Design verification and our focus on standards, threads, and

traces as a means of addressing architecture verification.

• A quick overview of software architecture, architecture descriptions, and

DoDAF 2.0

• A run down of our “Orion Risk #34 – Inadequate Software Architecture”

against DoDAF 2.0 dimensions as a set of observationsagainst DoDAF 2.0 dimensions as a set of observations

• Results of submitting our Orion Risk #34 at the Orion SW PDR.

• Addressing Architecture Risk

• Essential Architecture Verification Properties – laying the groundwork for our

prototype Event Integration Analysis method

• Software Architecture Verification Matrix – Analysis Dimensions vs.

Essential Properties and their coverage by Event Integration Analysis

• Event Integration Analysis method overview

• Preliminary Event Integration Analysis Results

• Conclusions

Orion Crew Exploration Vehicle

Orion’s avionics suite will embody complex software behaviors

NASA Software IV&V Technical Framework Q&A

• How do we know that:

– The system architecture contains necessary items to carry out mission

and satisfy user needs?

• A: Use architecture standards as means to judge whether the necessary views

exist in the software design – allowing the project to succeed.

– The system’s software requirements are high quality (correct, consistent,

complete, accurate, readable, and testable), and will adequately meet the

needs of the system and expectations of its customers and users,

considering its operational environment under nominal and off-nominal

Standards

considering its operational environment under nominal and off-nominal

conditions, and that no unintended features are introduced?

• A: Examine integrated threads of execution across the system to ensure than

nothing is missing including redundant paths as required for mission critical

scenarios.

– The complete, integrated system complies with its specified system

requirements allocated to software and to validate whether the system

meets its original objectives?

• A: Trace software components through threads of execution to ensure that the

correct components are in place and that the system will meet performance

requirements. Also, trace requirements, architecture, and design artifacts

through these threads of execution to ensure compliance with the original

objectives.

Threads

Traces

Standards

• IEEE 1471-2000

– Systems and software engineering – Recommended practice for

architectural description of software-intensive systems

• DoDAF 2.0

– DoD Architecture Framework 2.0

5

What is software architecture?

• IEEE Standard Glossary of Software Engineering

Terminology:

– architecture: The fundamental organization of a system embodied

in its components, their relationships to each other, and to the

environment, and the principles guiding its design and evolution.

– architectural description (AD): A collection of products to

document an architecture.document an architecture.

– view: A representation of a whole system from the perspective of

a related set of concerns.

– viewpoint: A specification of the conventions for constructing and

using a view. A pattern or template from which to develop

individual views by establishing the purposes and audience for a

view and the techniques for its creation and analysis.

6

Conceptual Model of an Architectural Description

IEEE 1471
Manned Space

Exploration

Earth

Space

ISS

Orion

Orion Avionics Design

Databook (ADD) Volume VII -

Software

Applied to Orion

Orion

Software

Design

7

DoDAF 1.5

DoDAF 2.0

Rhapsody UML

Together UML

NASA

USA

International

Safe

Feasible

Features

Explore

Cost

Operations

Processes

Events

Components

Data

DoDAF 2.0 Viewpoints

8Legend: = Orion Architecture Risk Areas

Orion Risk #34 – Inadequate SW Architecture

Areas of Weakness vs. DoDAF 2.0 Views

9

Observation: While the physical data models delivered for Orion PDR
were strong, there was virtually no conceptual or logical data model
tying Orion into the Constellation system data exchanges. Orion is a
data-driven spacecraft – reconfigurable via configuration files. A
strong data architecture is just as important as a sound software
architecture.

Orion Risk #34 – Inadequate SW Architecture

Observation: Many low-level use cases and activity diagrams are being

10

Observation: Many low-level use cases and activity diagrams are being
developed for Orion, however higher-level operational activity diagrams
from a crew or ground-ops viewpoint are missing. This is critical for
defining sound threads of operation for Orion command and control.

Orion Risk #34 – Inadequate SW Architecture

Observation: Clear, clean state transition descriptions and event-trace
descriptions for critical non-recoverable Orion events such as Crew
Module / Service Module separation via major software components are

11

Module / Service Module separation via major software components are
lacking.

Orion Risk #34 – Inadequate SW Architecture

Observation: While interfaces have been defined between Orion
partitions, the actual data flowing across these interfaces remains
largely undefined as well as the rates of data transfer. Without such
information, it is difficult to predict whether Orion processors will meet
their throughput constraints or whether they will become I/O-bound.

12

Orion Risk #34 - Results

• Orion Risk #34 was the #1 Action Item at Orion Software PDR

• Orion developer responded quickly with a significant upgrade

to the Orion Avionics Design Databook (ADD) Volume 7 –

Software Architecture

• While the ADD upgrade still falls short in the DoDAF views

mentioned in this presentation, it was a great improvement

over the previous ADD version.over the previous ADD version.

• Orion developer should deliver an update to the ADD Volume

7 for Orion Software CDR filling in many gaps in the current

document.

• Risk has gone from red to yellow

• The PDR Action Item is now closed at the by Orion Avionics,

Power, and Software Office

13

Addressing Architecture Risk

• In light of Orion Risk #34, our Orion IV&V team decided to

try some new approaches for “Integration Analysis” across

key Orion threads.

• What follows is a breakdown of what one of our architecture

verification task teams is doing to further investigate critical

non-recoverable events within Orion as “Integration Threads”

• This is a prototype method that is under trial right now on • This is a prototype method that is under trial right now on

the Orion IV&V team.

14

SW Architecture Verification - Essential Properties

• What is the software supposed to do?

– Specification – the nominal path - the system capabilities

• What is the software not supposed to do?

– Unexpected emergent behavior – boundary specification – guards and

inhibits

• What is the software supposed to do under adverse

conditions?conditions?

– FDIR – system biases – tolerances – off-nominal paths

• What are the safety considerations?

– Crew – mission – public

• What are the integration or interfacing considerations?

– System of systems – system – module – CSCI – component – HW/SW –

partitions – network – parallelism – compatibility

• What are the dependability considerations?

– Performance – capacity – complexity – stability

15Standard IV&V questions plus safety, integration, and dependability

SW Architecture Verification – Examples 1

Analysis

Dimensions

Intended behavior Unacceptable

Behavior

Adverse

Conditions

Safety Integration Dependability

Interface Analysis Control algorithms,

protocols, data

content/format,

performance

Unacceptable

Performance

Thresholds

Control algorithm

recovery,

performance

mitigation

measures

Control Algorithms Protocols, data

format

Performance

Interface

Verification

Services required

across interface,

service agreements

Violated Interface

preconditions /

post-conditions,

invariants; service

interruption

Guards, inhibits Preconditions,

Post-Conditions,

Mission Phase

Interlocks, Event

Control

Design coupling,

robustness

Invariants, service

interruption

recovery, quality of

service

16
16

End-to-End

Performance

Analysis

Service delivery Consequences

of service failure,

unexpected

emergent behavior

Distributed

redundancy and

fail-over

Crew, Mission System of

Systems

System of Systems

Timing

Requirements

Nominal mission

phases and

segments

Blown

performance

margins, missing

timing

requirements

Safety and

Recoverability,

timing margins

Timeline

management,

phase transition

interlocks

Constellation Orion

Security

Requirements

Secure

communication

Compromised

communication

Encryption

methods,

redundant

communication

channels

Flight

termination

system

Communication

encryption

standards

Redundancy

Legend: = Event integration analysis Legend: = Future Targets

SW Architecture Verification – Examples 2

Analysis

Dimensions

Intended behavior Unacceptable

Behavior

Adverse

Conditions

Safety Integration Dependability

Suitability for

Mission

Crew Safety,

Mission Success

Loss of Crew, Loss

of Mission

Degraded modes Launch Abort

System

Crew Office, MS,

GS

Stability, Maturity,

Control

Testing and

Verification

Requirements

Nominal modes Fault Trees Off-Nominal Modes LOC/LOM

prevention

scenarios

Kedalion lab Consistent,

Complete,

Unambiguous

17

Legend: = Event integration analysis

Event Integration Analysis

18

Event Integration Analysis Steps

1. Extract Event References -- Extract relevant event references from

artifacts. Example event - CM/SM separation Use Orion CONOP, CM Spec, SM Spec,

Little ADD V7, TMG SRS, TMG SDD, VMG SRS, VMG SDD, Pyro SRS, Pyro SDD, other

documents as required or are relevant.

2. Identify Significant Event -- Elucidate necessary event operations.

3. Identify Event Sequences -- Show event leading up to event being analyzed, and the

Domains that are involved.

4. Identify Hardware Deployment Schema -- Develop hardware diagram that depicts all

relevant computing hardware involved in the subject event. (Example for CM/SM

pyrotechnic event includes VCM, FCM, DCM, PDUs, etc.) pyrotechnic event includes VCM, FCM, DCM, PDUs, etc.)

5. Synthesize event flow state transitions -- Show and describe event transition flows.

6. Evaluate State Transitions -- Evaluate event flow and state transitions for

completeness and consistency using UML diagrams and artifact inputs. Use model

animation to find weaknesses in state transition diagrams.

7. Trace Events -- Trace event threads from top down and from bottom up to look for

gaps in requirements, design, and relevant documentation.

1. Artifact Trace – Trace through artifacts looking for widows, orphans, etc. via CONOP, ADD V7,

Subsystem Spec, SRS, SDD.

2. Software Component Trace -- Trace through software components: domains, partitions, processes,

displays, and others as needed.

8. Issue Finalization and Summary -- Wrap up issues in PITS and move all issue to

ready for review.

19

Preliminary Event Integration Analysis Results

• We are about ½ way through our trial period with the new method for the

Orion CM/SM Separation Event

• Modeling Orion domains and assigning critical event operations to those

domains has improved our understanding of Orion.

• Examining pyrotechnic schematic diagrams has helped us better understand

the emerging software architecture.

• Findings are emerging

– Inconsistencies between the Timeline Manager, System Manager, and Vehicle

Manager – division of responsibilities in requirements and designManager – division of responsibilities in requirements and design

– The impact of the chain of latencies built into the pyrotechnic sequencing is

unclear.

– Vehicle proxy management may not be adequately specified

– Pyrotechnic timing sequences appear to be incomplete across Orion CSCIs

– FDIR for pyrotechnic event failure appears to be incomplete

• Areas where we need better understanding

– The full set of safe transitions for CM/SM Separation

– How the vehicle configuration is effected by CM/SM Separation

– How Orion Configuration Data Sets are associated with critical events

– Commanding redundancy and it’s role in unrecoverable Orion events

– Manual vs. Automatic event initiation

20

Conclusions

• Using an architecture framework such as DoDAF 2.0 works well for
finding deficiencies in emerging software architectures. Orion Risk #34
is achieving good results.

• In developing a new method, it’s important to work to NASA and
industry standards. Don’t reinvent the wheel. Use the knowledge base
that already exists.

• Preliminary results from Event Integration Analysis appear promising –
examining integration threads that lead to a non-recoverable event
such as CM/SM separation provides focus for evaluating many aspects
of the emerging Orion software architecture such as:

21

of the emerging Orion software architecture such as:
– Software component synchronization

– System latency analysis

– Command redundancy

– Fault Detection, Isolation, and Recovery (FDIR)

– Event planning

– Safety precautions: Inhibit, Enable

– Data architecture and data-driven vehicle reconfiguration

– Vehicle ordnance control

– Manual vs. Automatic commanding

– Hardware control via software

– Cross-CSCI threads of control

Thank-you!Thank-you!

22

