
2012 IV&V WORKSHOP
NASA IV&V - SMA SUPPORT OFFICE (SSO)
Chad Schaeffer (Chad.Schaeffer@TASC.com)
Ryan Schmidt (Ryan.Schmidt@TASC.com)

Independence of Inhibits -
Stored Command Sequences

September 11, 2012 1

Agenda

• Inhibit Overview

• Verifying Independence Within Stored Command
Sequences

• Verification Rule Example

• Software to the Rescue

• GPM Example

• Conclusion

September 11, 2012 2

Inhibit Overview

• NASA uses inhibits to mitigate potential hazards
– From the NASA General Safety Program Requirements (NPR 8715.3C)

• 1.7.3.1 a. Operations that require the control of a condition, event, signal, process, or item for which proper
recognition, performance, or tolerance is essential to safe system operation, use, or function are designed such
that an inadvertent or unauthorized event cannot occur (inhibit) (Requirement).

• 1.7.3.1 b. Operations have three inhibits where loss of life can occur (Requirement).

• 1.7.3.1 c. Operations have two inhibits where personal injury, illness, mission loss, or system loss or damage
can occur (Requirement).

• 1.7.3.1 d. The capability of inhibits or control procedures when required in operations by this paragraph are
verified under operational conditions including the verification of independence among multiple inhibits
(Requirement).

• Inhibits must be independent and include a hardware component (not just software)
– From the NASA Expendable Launch Vehicle Payload Safety Requirements (NASA-STD-8719.24 Annex, Vol 3)

• 3.2.6.1 Each design inhibit shall be independent of any other inhibit (i.e., loss or removal of one inhibit shall not
result in the loss or removal of any other inhibit). Additionally, control of inhibits shall also be independent.

• 3.2.7 Design inhibits shall consist of electrical and/or mechanical hardware.

• 3.2.8 Operator controls shall not be considered a design inhibit. Operator controls are considered a control of
an inhibit.

September 11, 2012 3

Inhibit Overview

• Software often controls the inhibits using commands

• Stored Command Sequences (SCS) are a bundle of
commands that can be initiated by a user or autonomously
initiated by the software

– SCSes pose a risk to the independence of the inhibits

• These commands and stored command sequences are likely
stored in a configurable table that is updated many times
through the software lifecycle

• These tables must be analyzed to ensure inhibit
independence as soon as the software is attached to
hardware (when hazards become possible)

September 11, 2012 4

Verifying Independence Within Stored
Command Sequences

• Verifying inhibit independence can be time consuming

– The number of SCSes to analyze may be large (may be
thousands)

– Analysis must be repeated (performed for each table
release used during mission phases where safety can be
impacted (test, operation, decommission, etc.))

– Verification rules may be tedious to manually perform (i.e.,
SCS that calls another SCS that calls another SCS…)

• Verifying inhibit independence can be difficult

– Verification rules will depend on software architecture

September 11, 2012 5

Verification Rule Example

Example Software Architecture

September 11, 2012 6

Telemetry
/ TLM_TankPr ess

Trigger
I f / TLM_TankPr ess > 100:
/ St ar t _SCS_Rel i ef Val ve

SCS
SCS_Rel i ef Val ve

Inadvertent operation of the relief valve
is mitigated by having three valves in
series each controlled by a software
command:

• /RV_Inhibit1

• /RV_Inhibit2

• /RV_Inhibit3

Example System

Verification Rule Example

1) No SCS may remove more than one inhibit from a single hazard

September 11, 2012 7

Telemetry
/ TLM_TankPr ess

Trigger
I f / TLM_TankPr ess > 100:
/ St ar t _SCS_Rel i ef Val ve

SCS
SCS_Rel i ef Val ve

SCS_Rel i ef Val ve:
 - / RV_i nhi bi t 1
 - / RV_i nhi bi t 2

SCS

Verification Rule Example

2) No SCS may call another SCS that ultimately removes more than one inhibit from
a single hazard

September 11, 2012 8

Telemetry
/ TLM_TankPr ess

Trigger
I f / TLM_TankPr ess > 100:
/ St ar t _SCS_Rel i ef Val ve

SCS
SCS_Rel i ef Val ve

SCS_Rel i ef Val ve:
 - / RV_i nhi bi t 1
 - / St ar t _SCS_TankPur ge

SCS
SCS_TankPur ge:
 - / RV_i nhi bi t 2

SCS

Verification Rule Example

3) No trigger may initiate more than one SCS that ultimately removes more than
one inhibit from a single hazard

September 11, 2012 9

Telemetry
/ TLM_TankPr ess I f / TLM_TankPr ess > 100:

/ St ar t _SCS_Rel i ef Val ve

Trigger SCS
SCS_Rel i ef Val ve

I f / TLM_TankPr ess > 100:
/ St ar t _SCS_Rel i ef Val ve
/ St ar t _SCS_TankPur ge

Trigger

Verification Rule Example

4) No trigger may initiate a SCS based on the state of another trigger or SCS that
ultimately removes more than one inhibit from a single hazard

September 11, 2012 10

Telemetry
/ TLM_TankPr ess I f / TLM_TankPr ess > 100:

/ St ar t _SCS_Rel i ef Val ve

Trigger SCS
SCS_Rel i ef Val ve

I f / TLM_TankPr ess > 100:
/ St ar t _SCS_Rel i ef Val ve

Trigger
I f / SCS_Rel i ef Val ve_St at e = Act i ve:
/ St ar t _SCS_TankPur ge

Trigger

Verification Rule Example

5) No single telemetry point can initiate more than one SCS that ultimately removes
more than one inhibit from a single hazard

September 11, 2012 11

Telemetry
/ TLM_TankPr ess

Trigger
I f / TLM_TankPr ess > 100:
St ar t SCS_Rel i ef Val ve

SCS
SCS_Rel i ef Val ve

I f / TLM_TankPr ess >= 100:
/ St ar t _SCS_Rel i ef Val ve

Trigger
I f / TLM_TankPr ess = 100:
/ St ar t _SCS_TankPur ge

Trigger

Verification Rule Example

• This simple example produced five rules to be assessed on
each SCS

• More complex architectures result in more rules with more
complexity

• More hazards introduce more inhibit commands and SCSes
to analyze

September 11, 2012 12

Telemetry
/ TLM_TankPr ess

Trigger
I f / TLM_TankPr ess > 100:
St ar t SCS_Rel i ef Val ve

SCS
SCS_Rel i ef Val ve

Software to the Rescue

• Software can assist inhibit independence verification

• Software can completely assess most verification rules

• For rules that are too complex to completely assess,
software can eliminate/narrow the items that require
manual analysis

– Advantages:

• Dramatically reduces time for each analysis iteration

• Less prone to human error

– Disadvantages:

• Must validate another piece of software

September 11, 2012 13

Global Precipitation Measurement (GPM)
Example

• GPM has 5 hazards with three inhibits controllable by
software (~50 inhibit commands)

• Six inhibit independence verification rules were defined

• 95 SCSes, 94 triggers, 153 telemetry Points, with an
additional layer between telemetry and triggers

• A VBA macro within MS Excel was created

– ~900 LOC with comments

– ~3 days to create

– Fully assesses 4 of 6 rules, minimizes manual analysis on
remaining 2 rules

September 11, 2012 14

Conclusion

• It is important that inhibits (and inhibit controls) are truly
independent

• It is a challenge to verify independence of inhibits that are
controlled by stored command sequences

– Volatility of software (many releases to verify)

– Number and complexity of independence “rules”

• Software can also be the answer!

– Macros/scripts can automatically assess many
independence “rules”

September 11, 2012 15

	2012 IV&V Workshop�NASA IV&V - SMA Support Office (SSO)�Chad Schaeffer (Chad.Schaeffer@TASC.com)�Ryan Schmidt (Ryan.Schmidt@TASC.com)
	Agenda
	Inhibit Overview
	Inhibit Overview
	Verifying Independence Within Stored Command Sequences
	Verification Rule Example
	Verification Rule Example
	Verification Rule Example
	Verification Rule Example
	Verification Rule Example
	Verification Rule Example
	Verification Rule Example
	Software to the Rescue
	Global Precipitation Measurement (GPM) Example
	Conclusion

