
Combinatorial Coverage
Measurement

Rick Kuhn
NIST

Software Failure Analysis
• We studied software failures in a variety of

fields including 15 years of FDA medical
device recall data

• What causes software failures?
• logic errors?
• calculation errors?
• inadequate input checking?
• interaction faults? Etc.

Interaction faults: e.g., failure occurs if
pressure < 10 (1-way <= all-values testing catches)
pressure < 10 && volume>300 (2-way <= all-pairs testing catches)

Example:
Failure when “altitude adjustment set on 0 meters and total flow
volume set at delivery rate of less than 2.2 liters per minute.”
=> 2-way interaction

Software Failure Internals
How does an interaction fault manifest itself in code?

Example: altitude_adj == 0 && volume < 2.2 (2-way interaction)

if (altitude_adj == 0) {

// do something

if (volume < 2.2) { faulty code! BOOM! }

else { good code, no problem}

} else {

// do something else

}

A test that included altitude_adj == 0 and volume = 1
would trigger this failure

How about flaws that are harder to find ?
•Interactions e.g., failure occurs if
• pressure < 10 (1-way interaction)
• pressure < 10 & volume > 300 (2-way interaction)
• pressure < 10 & volume > 300 & velocity = 5 (3-way interaction)
• The most complex failure reported required 4-way interaction to
trigger

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Interaction

%
 d

et
ec

te
d

What about other applications?

Server (green)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Interactions

%
 d

et
ec

te
d

These faults more
complex than
medical device
software!!

Why?

Others?

Browser (magenta)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Interactions

%
 d

et
ec

te
d

Still more?
NASA Goddard distributed database (light blue)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Interactions

%
 d

et
ec

te
d

Note:
development
data, others are
released
products

Even more?
FAA Traffic Collision Avoidance System module (seeded

errors) (purple)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Interactions

%
 d

et
ec

te
d

Finally
Network security (Bell, 2006) (orange)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Interactions

%
 d

et
ec

te
d

Curves appear
to be similar
across a variety
of application
domains.

Fault curve pushed down and right
as faults detected and removed?

Database 10s (testers)

App users

Med. 100s

Server 10s of mill.

Browser 10s of mill.

TCP/IP 100s of mill.

• How many parameters involved in faults? => interaction rule:
most failures are triggered by one or two parameters, and
progressively fewer by three, four, or more parameters, and the
maximum interaction degree is small.

Interaction Rule

•Maximum interactions for fault triggering was 6
•Popular “pairwise testing” not enough
•More empirical work needed
•Reasonable evidence that maximum interaction strength
for fault triggering is relatively small

How do we use this knowledge in testing?
A simple example

How Many Tests Would It Take?

� There are 10 effects, each can be on or off
� All combinations is 210 = 1,024 tests
� What if our budget is too limited for these tests?
� Instead, let’s look at all 3-way interactions …

� There are = 120 3-way interactions.
� Naively 120 x 23 = 960 tests.
� Since we can pack 3 triples into each test, we need

no more than 320 tests.
� Each test exercises many triples:

Now How Many Would It Take?

10
3

0 1 1 0 0 0 0 1 1 0

A covering array

Each row is a test:

Each column is
a parameter:

• Developed 1990s
• Extends Design of Experiments concept
• NP hard problem but good algorithms now

All triples in only 13 tests, covering 23 = 960 combinations 10
3

How does this knowledge help?

If all faults are triggered by the interaction of t or fewer
variables, then testing all t-way combinations can
provide strong assurance.

(taking into account: value propagation issues, equivalence
partitioning, timing issues, more complex interactions, . . .)

Test coverage measurement
Path coverage
• Many varieties, studied for decades
• Path, branch, condition coverage, plus many

variations
Combinatorial coverage
• The subject of this talk, new
• How should we measure it?

Combinatorial Coverage Measurement
Tests Variables

a b c d

1 0 0 0 0

2 0 1 1 0

3 1 0 0 1

4 0 1 1 1

Variable pairs Variable-value
combinations
covered

Coverage

ab 00, 01, 10 .75

ac 00, 01, 10 .75

ad 00, 01, 11 .75

bc 00, 11 .50

bd 00, 01, 10, 11 1.0

cd 00, 01, 10, 11 1.0

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

Graphing Coverage - graphing

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

Bottom line:
All combinations
covered to at least 50%

33% of combinations
covered 100%

Adding a test

Coverage after adding test [1,1,0,1]

Adding another test

Coverage after adding test [1,0,1,1]

Additional test completes coverage

Coverage after adding test [1,0,1,0]
All combinations covered to 100% level,
so this is a covering array.

Coverage Measurement Tool

4 variables, mixed level

• Line graph for 2-way coverage shows 100% for half, 75% for half;
3-way coverage (blue line) at 75% for 25% of combinations, 40% coverage for 75% of
combinations

• Number of 2-way combinations = C(4,2) = 6

Comparing with line graph:
• Line graph shows 3-way coverage (blue line) at 75% for 25% of combinations, 40%

coverage for 75% of combinations
• 3d graph shows one combination with 60%-80% coverage (green), and three with

40%-60% coverage (yellow)
• Number of 3-way combinations = C(4,3) = 4

Measurements of 3-way coverage

7 variables, mixed level

What does this mean?
• Compared w/ 2-way, far fewer combinations with >80% coverage (blue),

more with 60% .. 80% (green) than for 2-way
• Relatively few w/ <60% (red, orange, or yellow)
• One variable involved in low-coverage (orange) combinations, as seen by single line of markers
• Number of points = C(7,3) = 35

Two views of the 3-way graph.
x, y, z are variable indices; color is coverage level.

Random values, 0..3

Same data, w/ one interaction

p6 = (p5 + 2) mod 4

Spacecraft tests, 82 variables, mostly binary

• Line graph shows 2-way (red), 3-way (blue), and 4-way (green) combination coverage.
• Heat map shows 2-way combination coverage; percentage coverage shown in color key

above chart.

What does this mean?
• Compared w/ 2-way, far fewer combinations with >80% coverage (blue), more with 60% .. 80% (green)
• Relatively few w/ <60% (red, orange, or yellow)
• Small number of individual variables involved in low-coverage (orange) combinations
• Number of points = C(82,3) = 82,560

Heat map style graph of 3-way coverage
x, y, z are variable
indices;
color is coverage
level.

Summary
• Combinatorial coverage is an additional measurement that may

be applied to system tests
• applies to test data, rather than source code
• may have utility for other data analysis?

• Has been applied to tests for NASA spacecraft
• identify interactions that may not be tested sufficiently
• can be used to automatically generate new tests to

supplement coverage

• Part of overall combinatorial testing approach to software
assurance

• Further information: Rick Kuhn - kuhn@nist.gov

