V&V Activities within two Brazilian Space Research Institutes

Miriam C. Bergue Alves*
Valdivino Alexandre de Santiago Júnior+
Nandamudi L. Vijaykumar+

*National Institute for Space Research - INPE
São José dos Campos, SP, Brazil

+Institute of Aeronautics and Space - IAE
São José dos Campos, SP, Brazil

NASA IV&V Workshop
Morgantown, WV
September 11-13, 2012
Objective

This presentation relates some of the research initiatives of the Institute of Aeronautics and Space (IAE) and the National Institute for Space Research (INPE) with respect to the use of formal methods for the improvement of their V&V activities within the software development life cycle.
Outline

– Brazilian Space Program
– Presentation of IAE
– V&V Projects at IAE: Software Engineering Lab
– Presentation of INPE
– V&V Activities (Products/Projects) at INPE: CEA/LAC
– Conclusions
Brazilian Space Program

–Rocketry: launching and sounding rockets (IAE)

–Space exploration: satellites (INPE)

–Launch sites: Alcantara Launch Center and Barreira do Inferno Launch Center (DCTA)
V&V Projects at IAE

• Use of topology for verification of deadlocks in concurrent systems

 – This project proposes a method that maps scenario-based specifications of concurrent systems, represented formally by MSCs (Message Sequence Charts), to a topological space. This mapping allows to formally verify these specifications for deadlock scenarios.

 – A simple “proof-of-concepts” prototype was constructed.
V&V Projects at IAE

- Use of topology for verification

- Requirements Specification
- Message Sequence Charts
- Progress graph elaboration
- Deadlock detection algorithm
- Identification of forbidden scenarios
- Generation of the deadlock scenarios
- Scenario analysis

Deadlock

Improvements and corrections

V&V Projects at IAE

• Use of statechart-assertions for requirements specification, validation and verification

 – Formal computer-aided validation and verification of critical time-constrained requirements of the Brazilian Satellite Launcher flight software. It included the entire specification, validation, and verification process based on UML statechart-assertions and log files.
V&V Projects at IAE

• The SV&V process

- System requirements analysis/Reqs Specification using natural language (NL)
- Create UML statechart-assertions
- Validate the statechart-assertions using JUnit-based testing
- Automatically instrument source code
- Build the instrumented version of the system on the VxWorks-based target thereby creating log files
- Execute the resulting program on the VxWorks-based target
- Import the log files into the SV&V environment
- Create a namespace mapping
- Run the JUnit verification tests against the assertions.

V&V Projects at IAE

- **SV&V – Some results**

<table>
<thead>
<tr>
<th>Validation Tests</th>
<th>Verification Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 tests (around 5 tests per assertion)</td>
<td>4 log files (4 tests per assertion)</td>
</tr>
<tr>
<td>220 JUnit classes - 1 JUnit class per test</td>
<td>4 JUnit class- 1 JUnit class per log file</td>
</tr>
<tr>
<td>132 success scenarios (around 60% of the scenarios)</td>
<td>31 assertions passed in all tests (around 70% of the assertions)</td>
</tr>
<tr>
<td>88 scenarios expect an assertion failure (around 40% of the scenarios)</td>
<td>13 assertions failed at least in one test (around 30% of the assertions)</td>
</tr>
</tbody>
</table>

V&V Projects at IAE

- **Use of timed automata for model verification**

 - A case study of a legacy space flight software system is being conducted, where the flight control and the flight events sequence chain of a satellite launcher are under study.

 - Use of model checking and a timed automata (TA) network to model the original requirements specification, incorporating new mission requirements and modifications.

 - Improve reliability in legacy systems evolution.
V&V Projects at IAE

• Use of timed automata for model verification

TA network (TAN) → Model Checker UPPAAL

Verifies if TAN satisfies Rq

yes → Property verified

no → Improvements/corrections

Requirement as system properties (Rq)
V&V Projects at IAE

• Use of Event-B and Rodin Platform

 – The UML-B and Event-B language are being used for the models elaboration of a case study that involves the control of the first stage of a launch vehicle, with the support of the computer-aided tool Rodin Platform (Rigorous Open Development Environment for Complex Systems).

 – The work is at its initial phases of creating and refining the models, with emphasis to the improvement of the system dependability.
V&V Projects at IAE

- Use of Event-B and Rodin Platform: example
INPE’s Organization Chart

Board of Postgraduate Programs

Scientific-Technical Board

Director (DIR)

Postgraduate Programs Service (SPG)

Office of the Director (GAB)

Documentation and Information Service (SID)

INPE ⇒ 7 Postgraduate programs.

Integration and Testing Lab (LIT)

Coord of Associated Laboratories (CTE)

Coord of CBERS Satellite Program (CBE)

Coord of Space Technology and Engineering (ETE)

Coord of Earth Observation (OBT)

Material and Sensors Lab (LAS)

Plasma Lab (LAP)

Applied Mathematics and Computing Lab (LAC)

Propulsion and Combustion Lab (LCP)

Cnt Science Terrest Syst (CST)

Cnt Satellite Control and Tracking (CRC)

Coord of Regional Cnt (CCR)

Coord of Tech Mgmt (TEC)

Center for Weather Forecasting and Climate Studies (CPTEC)

Coord of Atmospheric and Space Sciences (CEA)

Aeronomy Division (DAE)

Astrophysics Division (DAS)

Space Geophysics Division (DGE)

Balloon Launching Division (SLD)

V&V Activities at INPE: Products

• **Automated Test Case Generation based on Statecharts (GTSC):**

 – Model-based test case generation based on Statecharts ⇒ four test criteria (all-transitions, all-simple-paths, all-paths-k-C0-configuration, all-paths-k-configurations) from the Statechart Coverage Criteria Family (SCCF);

 – Model-based test case generation based on FSM ⇒ three test criteria (DS, UIO, H-switch cover) where one (H-switch cover) is a new test criterion.
GTSC 2.0: Main Interface
V&V Activities at INPE: Products

WEB - PerformCharts

<table>
<thead>
<tr>
<th>Step</th>
<th>Event</th>
<th>State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EB9</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>WaitingTimeExpired</td>
<td>WaitingSync</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EB9</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ExpIRec</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>WaitingTimeExpired</td>
<td>WaitingSync</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EB9</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ExpIRec</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TypeRec</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>WaitingTimeExpired</td>
<td>WaitingSync</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>EB9</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ExpIRec</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>TypeRec</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SizeRec</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>WaitingTimeExpired</td>
<td>WaitingSync</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>EB9</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ExpIRec</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>TypeRec</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>SizeRec</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>DataRec</td>
<td>CountingTime</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>WaitingTimeExpired+ChecksumRec</td>
<td>WaitingSync</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>NotEB9</td>
<td>IdleWaitingSync</td>
<td></td>
</tr>
</tbody>
</table>

NASA IV&V - Sept. 2012
V&V Activities at INPE: Products

• **SOLIMVA** ⇒ A methodology aiming at:

 – the generation of model-based system and acceptance test cases considering Natural Language (NL) requirements deliverables (artifacts) ⇒ **Version 1.0 (software testing)**;

 – the detection of incompleteness in software specifications ⇒ **Version 2.0 (software inspection with the aid of formal verification)**;

 – **Formal Verification (Model Checking)** of UML-based software ⇒ **Version 3.0 (Formal Verification in the traditional approach)**.
The SOLIMVA methodology 1.0: Workflow

1. Define and Input Dictionary
2. Define Scenarios
3. Select and Input NL Requirements
4. Update Dictionary
5. Generate Model
6. Generate Abstract Test Cases
7. Generate Executable Test Cases
8. Clear Requirements and Model
9. [Manual refinement]
10. [More scenarios]
11. [End of scenarios]
The SOLIMVA methodology 1.0: Workflow

Software Testing:
- Model-Based Testing (Statechart-based testing; GTSC);
- Combinatorial Designs;
- Part Of Speech Tagging (SOLIMVA tool 1.0);
- Word Sense Disambiguation (SOLIMVA tool 1.0).
The SOLIMVA methodology 1.0: Tool (1.0)
The SOLIMVA methodology 2.0: Workflow

Software Inspection with the aid of Formal Verification:
- Model Checking;
- Specification Patterns;
- k-Permutations of n Values of Variables (Characteristics).

The SOLIMVA methodology 3.0: Workflow

Formal Verification (UML)

Define and Input Dictionary

Analyze Incompleteness

[else]

[incomp detected]

Improve Specifications

Define Scenarios

Select and Input NL Requirements

[dictionary update]

Update Dictionary

[else]

Generate Model

Clear Requirements and Model

[manual refinement]

[else]

[more scenarios]

Generate Abstract Test Cases

Generate Executable Test Cases

Select Use Case

Identify Scenarios

Start Formal Verification

Select Diagrams

Select Requirements

Generate NuSMV Model

Formalize Properties

Simulate Model

[mode1’s defects]

[else]

Apply Model Checking

Generate Report of System Defects based on Counter Examples

[more scenarios]

[end of scenarios]

[end of scenarios]
V&V Activities at INPE: Products

V&V Activities at INPE: Application to Projects

- **Alpha, Proton and Electron Monitoring Experiment in the Magnetosphere (APEX).**
 - Products ⇒ GTSC, WEB-PerformCharts, QSEE-TAS.

- **Quality of Space Application Embedded Software (QSEE) –** Software for the Payload Data Handling Computer (SWPDC).
 - Products ⇒ GTSC, WEB-PerformCharts, SOLIMVA, QSEE-TAS.

- **protoMIRAX Scientific Experiment (Balloon application).**
 - Products ⇒ GTSC, SOLIMVA.
APEX

IUT:
- Command Recognition Component of the APEX embedded software;
- Simulated version (Java).

QSEE/SWPDC: Physical Architecture
QSEE/SWPDC: Example of Statechart model

SOLIMVA 1.0 (methodology/tool)
\neg \exists [\neg (prim = valprim_i \land sec_j = valsec_{t1}) \cup ((prim = valprim_i \land sec_j = valsec_{t2}) \land \neg (prim = valprim_i \land sec_j = valsec_{t1}))]
QSEE/SWPDC: Remarks

• GTSC ⇒ test suites with more than 300 test cases.

• SOLIMVA 1.0 ⇒ better strategy with test objectives clearly separated according to the directives of Combinatorial Designs.

• SOLIMVA 1.0 ⇒ Executable Test Cases predicted behaviors that did not exist (Expert's strategy).

• SOLIMVA 2.0 ⇒ 362 CTL properties formalized, 21 incompleteness defects detected.
QSEE/SWPDC: Software Development Lifecycle

ECSS Tailoring

System Engineering

Requirements and Architecture Engineering

Design and Implementation Engineering

Verification Levels

Acceptance

Independent Verification and Validation

Processes

SRR PDR DDR CDR QR AR

Formal Reviews

QSEE/SWPDC: IV&V

• Test Case Generation ⇒ Model-Based Testing (FSM).

• Test Case Execution ⇒ QSEE-TAS tool.

• Test Results Evaluation ⇒ Four-step process:
 – Observation of test results (QSEE-TAS interface);
 – Assignment of a preliminary verdict;
 – Meeting (every week) ⇒ IV&V team and customer representatives at INPE to evaluate the test reports;
 – Final verdict ⇒ Non-Conformance Record (NCR).

protoMIRAX Scientific Experiment
Conclusions

• Main V&V activities, products and projects in the area of formal V&V of safety-critical space software systems within IAE-LES and INPE (CEA/LAC).

• More confidence in the right choice of techniques to be used in each phase of development and in each part or component of the space software.

• Importance of computer-aided tools to support the formal V&V process.

• Efforts to bridge the gap between the state of the art and the state of the practice (application of research results to space projects development).

THANK YOU!

Miriam C. Bergue Alves:
miriammcba@iae.cta.br

Valdivino Alexandre de Santiago Júnior:
http://www.cea.inpe.br/~valdivino/

Nandamudi L. Vijaykumar:
http://www.lac.inpe.br/~vijay/Welcome.html