2013 NASA Annual IV&V Workshop Fairmont, WV, USA

September 10 - 12, 2013

Modeling the Image-Processing Behavior of the NASA Voyager Mission with ASSL

by Emil Vassev and Mike Hinchey

September 12, 2013

Outline

Presentation

- 1. Introduction
- 2. Voyager and Our Research Objectives
- 3. **ASSL**
- 4. ASSL Model for Voyager

5. Discussion, Future Work, and Benefits

Introduction

AC & Space Exploration

Autonomic Computing (AC) – a solution to software complexity:

- ✓ Helps to implement self-adaptive and autonomic systems (ASs);
- ✓ Autonomic elements (AEs) the architectural components of an autonomic system (AS)
- ✓ AC may handles complexity in spacecraft computer systems

The new age of space exploration: NASA embarks in AC

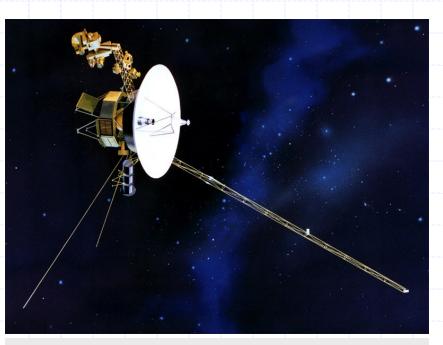
- ✓ AC software helps to build the next generation of unmanned spacecraft;
- ✓ Autonomous Nano-Technology Swarm (ANTS) concept mission;
- ✓ Deep Space One (DS1) mission;

Introduction

Our Approach – Prototyping with ASSL

AC-based Voyager-like missions:

✓ <u>Investigate hypotheses</u> about the design and implementation of future Voyager-like missions based on the AC principles.


✓ Build prototype software models:

- ✓ help in the <u>comparison of features and issues</u> of the actual Voyager mission with hypothesized possible autonomic approaches;
- ✓ bring significant benefits to the development of future space-exploration systems.
- ✓ We experiment with ASSL (Autonomic System Specification Language) to realize these goals.

Voyager and Our Research Objectives

The Voyager Mission

- \checkmark an extremely successful example for future space missions;
- \checkmark designed for exploration of the Solar System;
- ✓ continue to explore the space: now on the special Voyager Interstellar Mission;

Voyager Spacecraft [The Planetary Society, "Space topics: Voyager – the story of the mission"]

Factors of success:

- ✓ rigorous spacecraft design and implementation;
- ✓ spacecraft hardware was designed to allow for enhanced remote control programming;
- ✓ autonomous behavior persists in the Voyager requirements;

Voyager and Our Research Objectives

Objectives

Long-term objectives:

- ✓ model and implement with ASSL AS prototypes of future Voyager-like missions;
- ✓ benchmark experiments compare prototyped autonomic features and issues with the actual Voyager Mission;
- ✓ validate features in question and perform further investigations based on practical results under simulated conditions;

First objective:

✓ specify with ASSL and generate a prototype model for the *image-processing behavior* observed in the Voyager mission.

Event-driven behavior: Voyagers are able to detect space objects and take pictures of the same on-the-fly

Specification Model

I. Autonomic System (AS)

- AS Service-Level Objectives
- AS Self-Management Policies
- AS Architecture
- AS Actions
- AS Events
- AS Metrics

II. AS Interaction Protocol (ASIP)

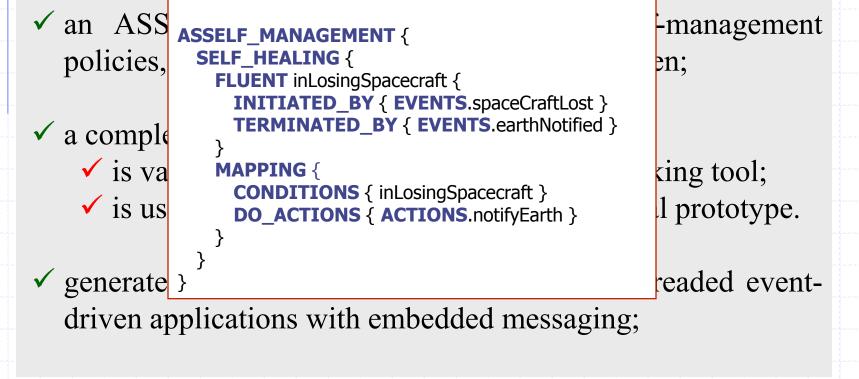
- AS Messages & Negotiation Protocol
- AS Communication Channels
- AS Communication Functions

III. Autonomic Element (AE)

- AE Service-Level Objectives
- AE Self-Management Policies
- AE Friends
- AE Interaction Protocol (AEIP)
 - AE Messages & Negotiation Protocol
 - AE Communication Channels
 - AE Communication Functions
 - AE Managed Resource Interface
- AE Recovery Protocols
- AE Behavior Models
- AE Outcomes
- AE Actions
- AE Events
- AE Metrics

- scalable specification model;
- provides judicious selection and configuration of infrastructure elements and mechanisms for ASs;
- decomposes an AS in two directions – 1) into levels of functional abstraction; 2) into functionally related sub-tiers;
- presents the system from three different perspectives 1) AS;
 2) ASIP; 3) AE;
- meets the AS builders needs;
- flexible approach to specification.

ASSL


Specifying and Generating Prototypes with ASSL

- ✓ ASSL tiers intended to specify different aspects of an AS, but only a few are needed to come up with a working model;
- ✓ an ASSL specification is built around self-management policies, which make that specification AC-driven;
- \checkmark a complete specification:
 - \checkmark is validated with a built-in consistency checking tool;
 - \checkmark is used to automatically generate a functional prototype.
- ✓ generated prototypes: fully-operational multithreaded eventdriven applications with embedded messaging;

ASSL

Specifying and Generating Prototypes with ASSL

✓ ASSL tiers - intended to specify different aspects of an AS, but only a few are needed to come up with a working model; ASSL Policy Specification

Specified Image-Processing Behavior

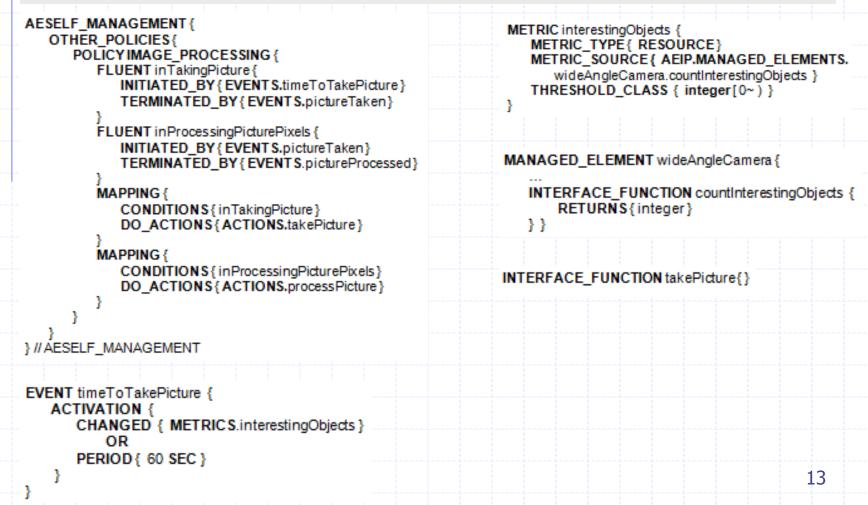
- 1. The Voyager II spacecraft:
- uses its cameras to monitor space objects;
- takes a picture with its cameras;
- notifies Earth that an image transmission is about to start;
- applies color filters and sends the stream of pixels to Earth;
- notifies antennas on Earth for the end of each session.

2. Antennas on Earth:

- are prompted to receive the image by special messages (one per applied filter);
- receive image pixels;
- are prompted to terminate the image sessions by special messages;
- send the collected images to the Voyager Mission base on Earth.
- 3. The Voyager Mission base on Earth receives images from antennas.

ASSL Specification

- ✓ we specified Voyager at the three main ASSL tiers AS tier, ASIP tier, and AE tier;
- ✓ we specified the Voyager II spacecraft and the antennas on Earth as AEs that:
 - \checkmark follow their encoded autonomic behavior;
 - ✓ exchange predefined ASSL messages over predefined ASSL communication channels.
- ✓ the Voyager mission autonomic behavior is specified at both AS and AE tiers as a self-management policy:
 - ✓ the global autonomic behavior is determined by the specification of that policy at each AE and at the global AS tier.


ASSL Specification - AS Tier specification

✓ IMAGE_PROCESSING self-management policy

<pre>FLUENT inProcessingImage_AntSpain { INITIATED_BY { EVENTS.imageAntSpainReceived } TERMINATED_BY { EVENTS.imageAntSpainProcessed }</pre>	
APPING { CONDITIONS { inProcessingImage_AntAustralia} DO_ACTIONS {ACTIONS.processImage("Antenna_Australia}	a")}
}	
	EVENT imageAntSpainReceived { ACTIVATION { RECEIVED { ASIP.MESSAGES.msgImageAntSpain }
ACTION IMPL processImage {	
PARAMETERS { string antennaName }	}
GUARDS {	EVENT imageAntSpainProcessed { }
ASSELF_MANAGEMENT.OTHER_POLICIES. IMAGE PROCESSING.inProcessingImage AntAustralia	
OR	
ASSELF_MANAGEMENT.OTHER_POLICIES. IMAGE_PROCESSING.inProcessingImage_AntJapan	
IF antennaName = "Antenna_Australia" THEN	
EVENTS.imageAntAustraliaProcessed END ELSE	
}	10
}	12

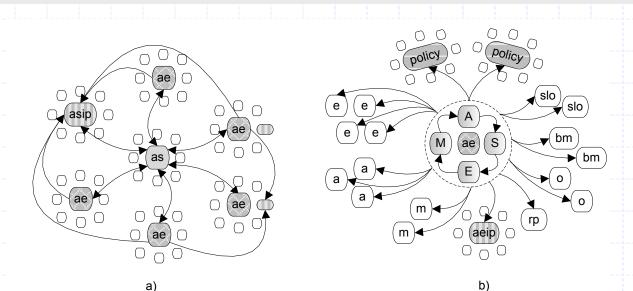
ASSL Specification – AE Voyager

✓ IMAGE_PROCESSING self-management policy

ASSL Specification – Antenna AEs

✓ IMAGE_PROCESSING self-management policy

FLUENT inStartingGreenImageSession { INITIATED_BY { EVENTS.greenImageSessionIsAboutToStart } TERMINATED_BY { EVENTS.imageSessionStartedGreen }


FLUENT inCollectingImagePixelsBlue {
 INITIATED_BY { EVENTS.imageSessionStartedBlue }
 TERMINATED_BY { EVENTS.imageSessionEndedBlue }
}

EVENT greenImageSessionIsAboutToStart { ACTIVATION { SENT { AES.Voyager.AEIP.MESSAGES. msgGreenSessionBeginAus } }

EVENT imageSessionStartedBlue {
 ACTIVATION { RECEIVED { AES.Voyager.AEIP.MESSAGES.
 msgBlueSessionBeginAus } }
}

Structure of the Generated Prototype

- ✓ a pure software solution both spacecraft and antennas are implemented as interacting components in a Java application;
 ✓ has a multi-granular structure composed of instances (objects) of the specified tiers in the ASSL specification:
 ✓ a bierarchical composition where sub-tier instances are
 - ✓ a hierarchical composition where sub-tier instances are grouped around instances of major tiers.

Behavior of the Generated Prototype

- ✓ log records show important state-transition operations ongoing in the system;
- ✓ these records help to trace and evaluate the behavior of the generated prototype model;

Test results:

The run-time behavior of the generated prototype model for the Voyager II mission strictly followed that specified with the ASSL IMAGE_PROCESSING self-management policy.

Behavior of the Generated Prototype

√ log	records show important state-transition	operations
ongo	 99) EVENT 'as.aes.voyager.events.TIMETOTAKEPICTURE': has occurred 100) FLUENT 'as.aes.voyager.aeself_management.image_processing.INTAKINGPICTURE': 	
Ŭ	has been initiated	• • • • • •
✓ these	101) ACTION 'as ass.voyager.actions.TAKEPICTURE': has been performed	vior of the
	 102) EVENT 'as.aes.voyager.events.PICTURETAKEN': has occurred 103) FLUENT 'as.aes.voyager.aeself_management.image_processing.INTAKINGPICTURE': 	
gener	has been terminated	
	104) FLUENT 'as.aes.voyager.aeself_management.image_processing.	
T (INPROCESSINGPICTUREPIXELS': has been initiated 105) ACTION 'as.aes.voyager.actions.PROCESSFILTEREDPICTURE': has been performed	
lest resu	106) ACTION 'as.aes.voyager.actions.PROCESSFILTEREDPICTURE': has been performed	
The run	107) ACTION 'as ass.voyager.actions.PROCESSFILTEREDPICTURE': has been performed	del for the
The run	108) ACTION 'as.aes.voyager.actions.PROCESSPICTURE': has been performed 109) EVENT 'as.aes.voyager.events.PICTUREPROCESSED': has occurred	
Voyager	110) EVENT 'as.aes.antenna_japan.events.BLUEIMAGESESSIONISABOUTTOSTART': has	the ASSL
• •	occurred	
IMAGE_	111) EVENT 'as.aes.antenna_spain.events.REDIMAGESESSIONISABOUTTOSTART': has occurred	
	112) FLUENT 'as.aes.antenna_spain.aeself_management.image_processing.	
	INSTARTINGREDIMAGESESSION': has been initiated	
	113) FLUENT 'as.aes.antenna_japan.aeself_management.image_processing. INSTARTINGBLUEIMAGESESSION': has been initiated	
	114) EVENT 'as.aes.antenna_spain.events.BLUEIMAGESESSIONISABOUTTOSTART': has	
	occurred	
	115) FLUENT 'as.aes.voyager.aeself_management.image_processing. INPROCESSINGPICTUREPIXELS': has been terminated	

Discussion, Future Work, Benefits

Discussion & Future Work

- ✓ image-processing programmed as an autonomic policy, but does not extend the original event-driven behavior observed in the Voyager Mission;
- ✓ the Voyager's prototype abstracts most of the spacecraft components;
- \checkmark the next prototype model:
 - ✓ will specify the spacecraft's radio, antenna, and two cameras as distinct managed elements this will allow the evaluation of component behavior (via ASSL metrics and events);
 - ✓ will extend the IMAGE_PROCESSING policy with other self-management features – two scenarios are planned: *remote-assistance self-healing* and *on-board self-healing*.

Discussion, Future Work, Benefits

Future Work Goals

- ✓ further prototype development:
 - detailed specification of the Voyager spacecraft components;
 - new autonomic features self-healing, self-protecting, and self-adapting policies;
- ✓ construct an intelligent Voyager-like system able to react automatically to hazards in space by finding possible solutions and applying those on-board with no human interaction;
- ✓ a new ASSL model checking mechanism is currently under development – this will allow for automatic feature validation and discovery of design flaws;

Discussion, Future Work, Benefits

Benefits For Space Systems

- ✓ both the ASSL specifications and the generated prototypes can be extremely useful for the design and implementation of future Voyager-like missions;
- ✓ the ability to compare features and issues with the actual mission and with hypothesized possible autonomic approaches gives significant benefit;
- ✓ we develop Voyager prototypes incrementally where each new prototype includes new autonomic features - this helps to evaluate the performance of each feature and gradually construct a model of a future Voyager-like system;
- ✓ this approach helps to discover eventual design flaws in both the original system and the prototype models;

Questions

(+

