Automated Design-Time Analysis
for the GOES-R System

David Hall and Corina Pasareanu
SGT and CMU SV, NASA Ames Research Center

GOES

* Geostationary Operational Environmental
Satellites (GOES)

— Operated by the National Oceanic and
Atmospheric Administration (NOAA)

— Provide continuous weather imagery and
monitoring of meteorological and space
environment data

— To protect life and property across the US

GOES-R

« NOAA/NASA GOES-R
— Next generation GOES
— Continuity of GOES
— Improvement of remotely sensed environmental data
— Must be extremely reliable and correct
— Software intensive
— Many interactive components

— ... challenge to verification

Testing

— typically used to ensure software reliability
— often manual and time-consuming

— used late in the software life cycle

— after the code has been written

— when it is expensive to fix discovered interaction
errors

Our Goal

e Systematic design time analysis

* |dentifying and correcting errors at design
time is easier and more cost effective

* Even if the system is already implemented

— behavior identified from the design specifications

can be used to guide testing and assess
completeness of the test cases

Analysis Approach

e The state transition behavior of the
ground segment of the GOES-R

e Translated into MathWorks’
Stateflow notation

— Natural mapping between GOES-R
design documents and state-charts

— Translated using Polyglot

— Analyzed using Ames JPF open-source
verification tool-set

Polyglot

An extensible framework for defining different
semantic variants of Statecharts

Provides modeling and analysis for multiple
Statechart formalisms

Captures interactions between components

Based on formal semantics that captures the
variants of Statecharts

Available from:

https://wiki.isis.vanderbilt.edu/MICTES/index.php/
Publications

Polyglot -- Tool Overview

/ Properties

State machine model (structure)
+ propertles (in Java)

~

N

»

=2 ;I

= 0

W

N Progerties.
Rhapsody

J

£ || Eamm o= == N
. B e B
Simulink/Stateflow 2r-n i ;
7 — -'—-1- ™ [IMPORT > ' s

Modeling /

@ermediate Representaﬁy

apps observation

property
v o\al on

1 Efror Found: De:
~

-

data/scheduling M /
mJI heuristics observation
ibrary ,“ choice m ~vm ”I verification report F N [N
verification target | abstraction generator listerer (I Execut'on
(Java by[ec?de 1] I
L A A Control o— |
’| Virtual Machine ff:zl'ﬁ |"—>
> Pluggable Semantics)
Search Strategy dr iver Core JPF ‘ O_ A
. . .
.] Generic Execution Environment
chi ecke Isle er nc e ror path)
system/ search see

Data interface

Java Pathﬁnder

Java

[ISSTA 2011, NFM 2012, MoDeVVa 2012]

Usage

User defines only the structure of the Statechart

The “pluggable” semantics are selected from a
defined set

Temporal properties specified with pattern-based
system

Analysis performed with:

— Simulation (run the Java program)

— Java Pathfinder: explicit state model checking

— Symbolic Pathfinder: automated test-sequence generation
available from: http://babelfish.arc.nasa.gov/trac/jpf/wiki

Statechart review

e Consider this Statechart™ :

/ a=true

6 B
= fal

 Event “e” leads to S4 (UML), S5 (Rhapsody), or (S6) Stateflow

« UML semantics evaluate transition actions at the end of a transition path, and Rhapsody
semantics perform transition actions when they are encountered.

Design Choice

Java as a common language representation

— Executable representation for the models, for
quick validation and debugging

— Enables modular and extensible design for Polygot

— Leverage JPF and SPF for model analysis and test-
case generation

— Large action languages can be mapped to Java

Property Specification

* Earlier study by Dwyer et al. found 92% of real
world specifications fall into a small category

* Property consists of 2 pieces:
1. Scope: when should property hold
2. Pattern: the conditions that should be satisfied

* Implemented as graphical extension to
Simulink/Stateflow

Patterns

* 5 total patterns in 2 groups

* Occurrence
— Absence: never true
— Universality: always true
— Existence: True at least once

 Order

— Precedence: a state must precede another
— Response: a state must follow another

Analysis with JPF / SPF

* Analysis and test-case generation is

performed with the Symbolic Pathfinder (SPF),

the symbolic execution module of Java
Pathfinder

* Tests reachability, generates test-vectors of
Input sequences

— Can be fed back to the original modeling tool or to
Polyglot

Java Pathfinder (JPF)

Systemunder Test . ract virtual machine

(Java bytecode)
-
:> JPF core verification
artifact
' extension - test case
_ _ « specification
JPF configuration =

« execution semantics
* program properties

extensible virtual machine framework for java bytecode verification
workbench to implement all kinds of verification tools

typical use cases:
software model checking (detection of deadlocks, races, assert errors)
test case generation (symbolic execution) ... and many more

Symbolic Pathfinder (SPF)

symbolic pathfinder (spf)

Systematic
Analysis
Test
_ Sequences
Java Constraint ;

Solving

bytecode
Error Report
Sym Exe Tree

combines symbolic execution, model checking and constraint solving
applies to executable models and code

handles dynamic data structures, loops, multi-threading, strings

java pathfinder extension project jpf-symbc [TACAS’03, ISSTA’08,ASE’ 0]

generates automatically input sequences to drive statecharts on different paths

Symbolic Pathfinder

available from jpf distribution
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc

® Preview File Edit View Go Tools Bookmarks Window Help

projects/jpf-symbc - Java Path Finder

« ‘ »> + @ http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc ¢ | (Qr jpf-symbc
m Popularv Wikipedia YouTube News (919)v Google Maps
Mac OS X: Shortcuts for taking pic... “ (4688 unread) - corina_pasarean... ‘\ Inbox - Outlook Web Access Light projects /jpf-symbc - Java Path Fi... |+
M

%55 o search
J .. the swiss army knife of Java™ verification Login Preferences

JPF-Wiki Timeline Roadmap View Tickets Ticket Stats Search Blog
projects / jpf-symbc Up Start Page Index History

Last modified 10 days ago

Ll o

Symbolic PathFinder

Symbolic PathFinder (SPF) combines symbolic execution with model checking and constraint solving for test case generation. In this tool, programs are
executed on symbolic inputs representing multiple concrete inputs. Values of variables are represented as numeric constraints, generated from analysis
of the code structure. These constraints are then solved to generate test inputs guaranteed to reach that part of code. Essentially SPF performs symbolic
execution for Java programs at the bytecode level. Symbolic PathFinder uses the analysis engine of the Ames JPF model checking tool (i.e. jpf-core).

a

MR/

Features

Symbolic PathFinder

Performs symbolic execution of Java bytecodes

Handles complex math constraints, data structures and arrays, multi-threading, pre-conditions, strings (on-going work)

Applies to (executable) models and code

Cenerates test vectors and test sequences that are guaranteed to achieve user-specified coverage (e.g. path, statement, branch, MC/DC coverage)
Measures coverage.

Generates JUnit tests, Antares simulation scripts, etc. (output can be easily customizable)

During test generation process, checks for errors

Is flexible, as it allows for easy encoding of different coverage criteria

Is integrated with simulation environment (on-going work)

Applications

Test input generation for Java container classes, NASA guidance navigation and control (GNC) software; script generation for testing execution engines.
Symbolic PathFinder has been used at Fujitsu Labs for testing Web applications - see =>Fujitsu press announcement.

Other info

e =>Combining Unit-level Symbolic Execution and System-level Concrete Execution for Testing NASA Software (paper published in ISSTA 2008
proceedings) -- describes Symbolic PathFinder

FNEEE 1 T N e e v

- vCanaralivad Cumbinlic Cvactitinm far Madal Choaclbina anmd Tactina namar mithlichad in TACAC 9°9NN02 mracroadinacl Aocervilhace handlines ~f inmrib

Execution with SPF

/Java Pathfinder / Symbolic Pathﬁnder\

4. Generates Test Property
4>
vectors reports
1. Input data
Execution engine .

g § State machine + property
" Crataflawn VLM N Rhancady)
 Stateflow i UML i Rhapsody 1 5 | chect e
N Pluggable Semantics) — —
Generic Execution Engine 3_'SEt—> o

Applications

* Analysis of arbiter module for the Mars
Exploration Rover [ISSTA 2011]

* |Interaction between Ares launch vehicle and
Orion Crew Exploration Vehicle [NFM 2012]

Results for GOES-R

MathWorks/Stateflow:

* GSSWRS

— Statechart with 8 states and 35
transitions

— Polyglot: 759 + 36 Java LOC

e GSTier:

— Statechart with 2 parallel state
machines (6 states, 24 transitions + 3
states, 6 transitions)

— Polyglot: 701 + 36 Java LOC

Example Simplified Model

Stateflow (chart) goesrexsimple/goesrsimple File Edit View Simulation Format Tool

File Edit View Simulation Debug Tools Format Add Patterns Help
BEHE iR =24 BE H» 1 = Hel B R M B

cmd

1

status
ApA2212.43
goesrsimple

omd:
0-onine
1-oMns
2-maintan

[emd==2]
= = strhus:
= 0-oparzonal
1-unzvaizb
2-dnd
3-dogradad

"[[:I’|'|| ==)

Absence Pattern

Property Name AbsencePropenv ‘ Help

— Propeny

BB |E il e @

The following must NEVER happen:
in(Status.Deqraded) && cmd == ‘/
E — Scope
5 § Global a] id
= E 1 P R R—
a0% |
|
| Cancel | OK
s) 4
Ready

Analysis with SPF

 Ran up to depth 40
* Generates 1482 test cases
* Properties:

— “absence”

— Model should never be in state “Degraded” if
command is “online”

Future Work

e Expand and robustify the tool

e Compositional verification from JPF [FASE
2009] for increased scalability

e |dentify and analyze more properties of
ground system in the GOES-R project

— Check conformance at different levels of
abstraction

— Measure coverage

