

Model-based testing of NASA systems

Dharma Ganesan, Mikael Lindvall, Charles Song, Christoph Schulze

Problems in NASA projects

- Test cases are often developed manually
- Some test execution is automated (e.g., JUnit)
- Test cases miss valid "corner" cases
- Difficult to summarize what was tested
- ➤ Approach: Test Automation and Model-based Test Generation and Execution
- Supported by NASA's SARP program

Motivation

- Software bugs can lead to deaths, injuries, or financial loss
- Software testing consumes 50% 75% of the development effort
- Many NASA projects could benefit from test automation
- Demonstrated several times that regular testing is not enough (defects remain undetected)
 - and that MBT can detect several of these defects.

Currently Targeted Projects

- GMSEC Reusable framework for ground systems
 - Modeled the Core API and Applications
 - Generated executable test cases from the model
 - Confirmed defects/violations reported and fixed
 - Test cases delivered to the team
- Core Flight Software Reusable framework for flight systems
 - Modeled the OS abstraction layer (OSAL)
 - Generated executable test cases from the model
 - Confirmed defects/violations reported and fixed

Currently Targeted Projects

- Space Network White Sands
 - Developed an initial framework for GUI testing
 - Demonstrated the benefits of the framework
 - More work is in progress

Advanced MBT

- Explicitly modeling the state space leads to scalability problem
 - Difficult to model all states manually
 - Difficult to slice the model for different scenarios
- We use Spec Explorer for sophisticated MBT
 - Models are C# programs (model programs)
 - State machines are generated from model programs
 - Better scenario control

Advanced MBT ...

 Explicit state space modeling is easier to use for small models but is less powerful

 Advanced MBT is very powerful, requires real programming skills

Current Results

- An end-to-end approach for test automation
- Approach found specification and runtime errors
 - Teams fixed those errors!
- Approach works well on different levels:
 - API (Module interface) level testing
 - GUI testing
- Easy to infuse e.g. GMSEC interns picked up immediately, developed models, found defects.

Sample discovered defects on GMSEC

- Sometimes results in extra message:
 - sub(x), pub(x), getNextMsg(), getNextMsg()
- Sometimes results in missing message:
 - sub(x), pub(x), unsub(x), getNextMsg()
- Sometimes results in failure:
 - connect(), disconnect(), connect()

Issues found when running model based tests on the Posix implementation of OSAL:

- File-descriptors issue after removing the file-system:
 - After somewhat long tests we would run out of file-descriptors
 - This would even happen with a newly created file-system
 - Cause: OSAL does not remove file-descriptors when the file-system is removed
 - Effect: inability to to create and open files.
- Wrong error codes returned and unimplemented features:

Test scenario	Error message	Expected	Actual
checkFileSystemNullName()	Expected 'invalid pointer' error	OS_FS_ERR_INVALID_POINTER(-2)	OS_FS_UNIMPLEMENTED(-5)
check File System Os Call Fails ()	Expected 'filesystem' error	OS_FS_ERROR(-1)	OS_FS_UNIMPLEMENTED(-5)
check Filesystem Valid ()	Filesystem Not Checked	OS_FS_SUCCESS(0)	OS_FS_UNIMPLEMENTED(-5)
copyFileLongSourceFilename()	Filesystem error code expected	OS_FS_ERROR(-1)	OS_FS_ERR_NAME_TOO_LONG(-4)
copyFileNonExistingSourceFile()	Filesystem error code expected	OS_FS_ERROR(-1)	OS_FS_SUCCESS(0)
readDirectoryValid()	Expected a valid pointer		
renameFileLongSourceFilename()	Filesystem error code expected	OS_FS_ERROR(-1)	OS_FS_ERR_NAME_TOO_LONG(-4)

MBT – some limitations

- Modeling requires specification of SUT
 - start with available spec and find spec. issues
- Developers are typically not used to modeling and abstraction
- Difficult to document individual test cases
 - Note: Models summarize all test cases
 - Some customers require document of each test case

ROI

"The GMSEC API provides an abstraction for message oriented middleware and support for multiple programming languages.

Fraunhofer has developed a sophisticated, programming language independent, model of GMSEC API behavior. Tests generated from that model have high-lighted cases where the behavior was not adequately specified, or varied between languages or middleware.

The value of the model was recently demonstrated after the addition of a new C# binding of the GMSEC API. Fraunhofer generated a large suite of test cases for the new language in one day. The remarkable turn-around was possible because only the mapping from the language independent test elements to the C# language was needed. "

Developer, NASA GMSEC Team

Summary and Next Steps

- We're building a practical approach that
 - Helps in test automation for NASA projects
 - Has been demonstrated to be
 - effective and efficient,
 - "easy" to infuse
 - applicable to many different types of systems
 - Contact Dharma (next slide) if you are interested in more info about MBT

Contact

- Dharma Ganesan
 - (dganesan@fc-md.umd.edu)
- Mikael Lindvall
 - mlindvall@fc-md.umd.edu