
CESE

Model-based testing of NASA
systems

Dharma Ganesan,
Mikael Lindvall,
Charles Song,

Christoph Schulze

1

CESE

Problems in NASA projects

• Test cases are often developed manually

• Some test execution is automated (e.g., JUnit)

• Test cases miss valid “corner” cases

• Difficult to summarize what was tested

�Approach: Test Automation and Model-based

Test Generation and Execution

�Supported by NASA’s SARP program

2

CESE

Motivation
• Software bugs can lead to deaths, injuries, or

financial loss

• Software testing consumes 50% - 75% of the

development effort

• Many NASA projects could benefit from test

automation

• Demonstrated several times that regular testing

is not enough (defects remain undetected)

– and that MBT can detect several of these defects.

3

CESE

Currently Targeted Projects

• GMSEC – Reusable framework for ground systems

– Modeled the Core API and Applications

– Generated executable test cases from the model

– Confirmed defects/violations reported and fixed

– Test cases delivered to the team

• Core Flight Software – Reusable framework for

flight systems

– Modeled the OS abstraction layer (OSAL)

– Generated executable test cases from the model

– Confirmed defects/violations reported and fixed

4

CESE

Currently Targeted Projects
• Space Network – White Sands

– Developed an initial framework for GUI testing

– Demonstrated the benefits of the framework

– More work is in progress

5

CESE

Hello World to MBT

6

CESE

7

CESE

Advanced MBT

• Explicitly modeling the state space leads to
scalability problem
– Difficult to model all states manually

– Difficult to slice the model for different scenarios

• We use Spec Explorer for sophisticated MBT
– Models are C# programs (model programs)

– State machines are generated from model programs

– Better scenario control

8

CESE

Advanced MBT …
• Explicit state space modeling is easier to

use for small models but is less powerful

• Advanced MBT is very powerful, requires
real programming skills

9

CESE

Current Results
• An end-to-end approach for test automation

• Approach found specification and runtime
errors

– Teams fixed those errors!

• Approach works well on different levels:

– API (Module interface) level testing

– GUI testing

• Easy to infuse - e.g. GMSEC interns picked up
immediately, developed models, found defects.

10

CESE

Sample discovered defects on GMSEC

• Sometimes results in extra message:

– sub(x), pub(x), getNextMsg(), getNextMsg()

• Sometimes results in missing message:

– sub(x), pub(x), unsub(x), getNextMsg()

• Sometimes results in failure:

– connect(), disconnect(), connect()

11

CESE

Sample defects using MBT on OSAL

12

Issues found when running model based tests on the Posix
implementation of OSAL:
• File-descriptors issue after removing the file-system:

• After somewhat long tests we would run out of file-descriptors
• This would even happen with a newly created file-system

• Cause: OSAL does not remove file-descriptors when the file-system is

removed

• Effect: inability to to create and open files.

• Wrong error codes returned and unimplemented features:

CESE

MBT – some limitations

• Modeling requires specification of SUT

– start with available spec and find spec. issues

• Developers are typically not used to
modeling and abstraction

• Difficult to document individual test cases

– Note: Models summarize all test cases

– Some customers require document of each

test case

© 2011 Fraunhofer USA, Inc.

CESE

ROI
"The GMSEC API provides an abstraction for message oriented middleware

and support for multiple programming languages.

Fraunhofer has developed a sophisticated, programming language
independent, model of GMSEC API behavior. Tests generated from that model

have high-lighted cases where the behavior was not adequately specified, or

varied between languages or middleware.

The value of the model was recently demonstrated after the addition of a

new C# binding of the GMSEC API. Fraunhofer generated a large suite of

test cases for the new language in one day. The remarkable turn-around
was possible because only the mapping from the language independent test

elements to the C# language was needed. "

– Developer, NASA GMSEC Team

14

CESE

Summary and Next Steps

• We’re building a practical approach that

– Helps in test automation for NASA projects

– Has been demonstrated to be

• effective and efficient,

• “easy” to infuse

• applicable to many different types of systems

– Contact Dharma (next slide) if you are

interested in more info about MBT

15

CESE

Contact
• Dharma Ganesan

– (dganesan@fc-md.umd.edu)

• Mikael Lindvall

– mlindvall@fc-md.umd.edu

16

