
IV&V Coverage of NASA Software
Guidelines

Jacob Cox

2013 IV&V Workshop

Introduction

• This presentation presents the results of
evaluating NASA IV&V static code analysis
processes with respect to the NASA Software
Standards checklist items.

• Attempts were made to identify:
– What NASA IV&V does cover? Quite a bit

– What NASA IV&V can cover? Almost all

– What NASA IV&V should cover? Most

– How can NASA IV&V cover the item?

2

What Was Looked At

• NASA Software Safety Guidebook; NASA-GB-
8719.13; 3/21/2004

– Appendix H, Checklists

• H.5, Checklist of generic (language independent)
programming practices

• H.8, Checklist of C programming practices for safety

• H.9, Checklist of C++ programming practices for safety

3

The Standard and the Guidebook

• NASA-STD-8719.13 is mandatory for many
projects IV&V supports, and 8719.13 is a non-
mandatory expansion of the content of
8719.13

• From 7150.2
– When a project is determined to have safety-

critical software, the project shall ensure that the
safety requirements of NASA-STD-8719.13,
Software Safety Standard, are implemented by the
project. [SWE-023]

4

Statements from NASA-GB-8719.13 GB

• a guidebook for assessing software systems for software’s
contribution to safety and techniques for analyzing and applying
appropriate safety techniques and methods to software…

• The document: (provides)
– good software engineering practices which contribute to software

system safety.
– means to scope and tailor the software safety and software

engineering activities to obtain the most cost effective, best quality,
and safest products.

– analyses, methods and guidance which can be applied during each
phase of the software life cycle.

– development approaches, safety analyses, and testing methodologies
that lead to improved safety in the software product.

5

General Thoughts

• Most checklist items are the same as those in
other standards

• Most are obvious in the sense that they are
taught in programming classes

• It is good to have an explicit list of good
programming practices

• It is good to have rationale to refer to when
writing issues

6

Methodology

Filled out an MS Excel spreadsheet with the following information:

7

Column Name Intent
NASA Software Standards checklist item The text of the checklist item from 8719.13
General Severity An estimate of the general ORBIT issue severity for any IV&V TIM that may be

generated based on the item

IV&V Covers with Code Analysis IV&V currently writes issues with respect to the item

IV&V Can Cover IV&V can write issues or risks based on the item
IV&V Should Cover IV&V should write issues or risks based on the item

Rationale Reason that IV&V should address the checklist item indicted

Can write an issue? Sufficient data is explicitly provided to allow independent evaluation of the checklist
item

Static Analysis Can be found with Static Analysis tools
Simple Search Available Text searches with regular expressions can find
Code Review Requires the analyst to review the code manually
Other Analysis Could be found with analysis other than either syntactic or semantic code analysis

Project Start Is a systematic software development and verification/validation issue and the
indicated checklist item is not specifically related to a given Software release or the
resultant code

Sample From the Worksheet

8

Checklist Severity

IV&V
Covers

with Code
Analysis

IV&V Can
Cover

IV&V
Should
Cover

Rationale
Atomic

(can write
an issue)

Static
Analysis

Simple
Search

Available

Code
Review

Other
Analysis

Project
Start

Minimize use of dynamic memory. Using dynamic
memory can lead to memory leaks. To mitigate the
problem, release allocated memory as soon as possible.
Also track the allocations and deallocations closely.

risk Yes Yes Yes NA No No Yes No No No

Minimize memory paging and swapping. In a real-time
system, this can cause significant delays in response
time.

any No Yes Maybe
Architectu
re Analysis

No No No No Yes No

Avoid goto’s. Goto’s make execution time behavior
difficult to fully predict as well as introducing
uncertainty into the control flow. When used, clearly
document the control flow, the justification for using
goto’s, and thoroughly test them.

4 Yes Yes Yes NA Yes No Yes No No No

Minimize control flow complexity. Excessive complexity
makes it difficult to predict the program flow and
impedes review and maintenance. Project guidelines or
coding standards should set specific limits on nesting
levels.

4 Yes Yes Maybe
Project
Interest

No Yes No No No No

Observations

• Would other analysts always agree with the
entry choices? No

• Is it possible that there were ORBIT issues that
I was unable to find showing that NASA IV&V
covered a particular item? Yes

• Were the checklist items always properly
interpreted? Probably Not

9

ORBIT is NASA IV&Vs issue tracking system

Checklist Items

• 120 checklist items (Item text is italicized)

• Some can be found with multiple types of
analysis

• There is duplication and partial overlap amongst
some items

– Explicitly define class operators (assignment, etc.).
Declare them private if they are not to be used

– For all classes, define the following: Default
constructor, copy constructor, destructor, operator=

10

Checklist Items Continued

• Most items are not absolute e.g. “avoid”
“minimize”

• Some are “do” statements
– Minimize control flow complexity

• Some are “do not” statements
– Avoid goto’s

• Most of the C++ items are written as implied “be
aware statements”
– Error associated with Functions - Unwanted side

effects in a function

11

?? Items

• There were 7 checklist items that were
phrased in a way that it would be possible to
interpret them in multiple ways and they were
left out of the analysis.

• Examples:

– Error associated with Functions - Improper use of
the same function for assignment and evaluation

– Error associated with Functions - Improper use of
built in functions and/or compiled libraries

12

Severity Summary

4 non-runtime issue 44

<=3
run time fault of some
kind 48

any
could be minor or
severe 8

NA a compiler error 1
risk a program risk 12

13

Severity Examples

• <=3
– Error associated with Control Flow - Incorrect

precedence assumptions

• 4
– Use single purpose functions and procedures. This

facilitates review and maintenance of the code.

• any
– Error associated with Variables - Incorrect use of

global variables

• risk
– Use version control tools (configuration management)

14

IV&V Coverage with Code Analysis

• Partial
– Error associated with Control Flow - Interface errors (e.g., inaccurately

ordering or reversing the order of parameters passed to a function)

• Inconsistent
– Use #define instead of numeric literals. This allows the reader or

maintainer to know what the number actually represents
(RADIUS_OF_EARTH_IN_KM, instead of 6356.91). It also allows the
number to be changed in one place, if a change is necessitated later.

• No
– Be careful when using operator overloading. While it can help achieve

uniformity across different data types (which is good), it can also
confuse the reader (and programmers) if used in a non-intuitive way.

15

Partial 4

Inconsistent 2

No No SA issues found in ORBIT 74

Yes Static Analysis issues found 33

IV&V is Capable of Covering
No IV&V cannot cover 2

Yes IV&V can cover 111

• IV&V Can’t Cover
– Error associated with Control Flow - Parameters of incompatible

type with the function prototype
– Limit the number and size of parameters passed to routines. Too

many parameters affect readability and testability of the
routine. Large structures or arrays, if passed by value, can
overflow the stack, causing unpredictable results. Always pass
large elements via pointers.

16

IV&V Should Cover

• Difficult
– Error associated with Variables - Reuse of variables

without reinitialization

• Maybe
– Minimize control flow complexity

• No
– use single entry and exit points in subprograms

Difficult Large amount of manual effort 35

Maybe Project dependent 4

No IV&V should not cover 4

Yes Should be covered by IV&V 70

17

TIMS can be Written
No Analysts cannot write issues 16

Yes TIMs can be written 97

• No

• Minimize dynamic binding. Dynamic binding is a necessary
part of polymorphism. When used, it should be justified.
Keep in mind that it causes unpredictability in name/class
association and reduces run-time predictability.

• Create coding standards for naming, indentation,
commenting, subprogram size, etc. These factors affect the
readability of the source code, and influence how well
reviews and inspections can find errors.

18

Can be Found with Static Analysis
No Cannot be found with SA 88
Sometimes Elements can be found with SA 2
Yes Can be found with SA 23

• No
– Use single purpose functions and procedures. This facilitates review

and maintenance of the code.

• Sometimes
– Check input data validity. Checking reduces the probability of incorrect

results, which could lead to further errors or even system crashes. If the
input can be “trusted”, then checking is not necessary.

• Yes
• Declare the destructor virtual. This is necessary to avoid problems if

the class is inherited.

19

Can be Found with Text Searches

• No
– Use const variables and functions whenever possible.

When something should not change, or a function should
not change anything outside of itself, use const.

• Yes
– When using switch…case, always explicitly define default.
– find rootDirectory/ -name '*.c*' | xargs ggrep -E

'default|switch' {} | less

No Text searching cannot find 94

Yes Can be found with text searches 19

20

Can be Found with a Code Review

• No
– Provide adequate precision and accuracy in

calculations, especially within safety-critical
components. (Design Analysis)

• Yes
– Error associated with Control Flow - Interface errors

(e.g., inaccurately ordering or reversing the order of
parameters passed to a function)

No Code review cannot find 63
Yes Can be found with a code review 50

21

Non-Implementation Analysis

• No
– Error associated with Variables - Over estimation of predefined

type's size.
– Do not use ++ or – operators on parameters being passed to

subroutines or macros. These can create unexpected side effects.

• Yes
– Error associated with Memory - System running on unreliable

data (Dynamic Testing or Data Validation)
– Explicitly define class operators (assignment, etc.). Declare them

private if they are not to be used. (Design Analysis with OO
Diagrams)

No Best found in implementation 84
Yes Found with other IV&V analysis 29

22

Found at Project Start

• Yes
– Use version control tools (configuration management)

– Enable and read compiler warnings. If an option, have
warnings issued as errors.

– Utilize a bug tracking tool or database

– Use data typing. If the language does not enforce it,
include it in the coding standards and look for it during
formal inspections

No Found during project execution 109
Yes Can be found at start of project 4

23

Next Steps

• Klocwork and Flexelint warnings for each
applicable checklist item

• Regular expressions for searchable items

24

Conclusion

• IV&V can cover almost 93% of the checklist
items; 111 of 120 (including the 7 ?? Items)

• Static Code analysis and text searching cover
45 % of checklist items for which TIMs could
be written; 44 of 97

25

Next Conclusion

• Of the 70 Checklist items IV&V “should” cover:
– 36 can be covered with static code analysis

– 16 can be covered with text searches

– 14 can be covered with code reviews

– 36 can be covered with other types of analysis

– 3 can be addressed during project startup
Note that there is significant overlap

• Of the 70, IV&V already covers 33 of the checklist
items

26

Final Conclusion

• NASA IV&V should develop process assets and
modify methods in the NASA IV&V Catalog of
Methods to insure that all the checklist items
that should be covered are covered.

27

