Aeronautics Committee Report

to the NASA Advisory Council

Ms. Marion Blakey (Chair)

April 24, 2013
Committee Information

• **Members:**
 — Ms. Marion Blakey, Chair (Aerospace Industries Association)
 — Mr. John Borghese (Rockwell Collins)
 — Dr. Ilan Kroo (Stanford University)
 — Dr. John Langford (Aurora Flight Sciences)
 — Mr. Mark Anderson (Boeing)
 — Dr. John-Paul Clarke (Georgia Institute of Technology)
 — Mr. Mark Pearson (General Electric)*
 — Dr. Mike Francis (UTRC)
 — Dr. Mike Bragg (University of Illinois)
 — Mr. Tommie Wood (Bell Helicopter)

• **Plans for next meeting:** Face-to-face Committee Meeting at NASA Headquarters, July, 2013.

Attended remotely
1) Review ARMD revised rotorcraft portfolio including the relevance to industry. Provide feedback on ARMD rotorcraft vision, research content, and planning process.

2) Review deliberations and initial activities of the Unmanned Aircraft Systems Subcommittee (UASS). The Committee will assess their yearly work plan and advise on areas of improvement.

3) Provide advice and innovative suggestions for conducting flight research within the current Aeronautics portfolio. The Committee will provide guidance concerning strategies for partnerships and lower cost flight research that has proved beneficial based on their industry and academic experience.

4) Provide guidance to the Integrated Systems Research Program to inform future program planning and enable a high degree of contribution and relevance to national aeronautics objectives. The Committee will provide suggested topics of future projects by ISRP in line with Program goals and Directorate Strategic Implementation Plan.

5) Review study plans, results and progress of the National Research Council-led Autonomy study. The Committee will provide an independent assessment of planning efforts in regards to the study outcomes and, if applicable, recommend follow on ARMD activities.
Areas of Interest Explored at Current Meeting

Topics covered at the Aeronautics Committee meeting held on February 28 - March 1, 2013 at NASA Headquarters:

Budget Status

ARMD Strategic Planning*

ISRP Future Direction

NRC Autonomy Study Planning

UAS Subcommittee Outbrief*

* This topic has a related finding or recommendation provided by the Aeronautics Committee
ARMD Approach to Planning

NASA Strategic Plan

- Strategic Trend Analysis
 - Sets the Framework
- Systems & Portfolio Analysis
 - Develops Concepts, Technical Challenges & Priorities
- Community Dialogue
- Subject Matter Experts
 - Performs Technical Planning

ARMD Strategic Implementation Plan
Strategic Trend Analysis

China & India Growing Economically at Historically Unprecedented Rates

Source: National Intelligence Council
Asia-Pacific region will have the Largest Middle-Class

Source: National Intelligence Council
Strategic Trend Analysis (cont.)

The World will be Predominantly Urban

Source: National Intelligence Council
Technology Development & Adoption is Accelerating

Source: National Intelligence Council
Mega-Drivers
Aviation Research & Technology

Traditional measures of global demand for mobility growing rapidly
• Rapid growth of developing economies
• Global urbanization

Critical energy and climate issues create enormous affordability and sustainability challenges

Revolution in automation, information and communication technologies enable opportunity for safety critical autonomous systems
Core Technologies support needed capacity growth and enable simultaneous reduction in energy use, noise and emissions

- Structural, Aerodynamic & Propulsion Component Efficiency
- New Configurations
- Automation for Efficient TBO Operations

However, performance gaps remain to fully account for future challenges in mobility, cost and climate

Low Carbon Fuels and Propulsion closes gaps in carbon emissions

Autonomy closes gaps in cost and enables mobility innovation
Community Dialogue

Advance ongoing research in NextGen, Safety, Green Aviation, and UAS Access

Undertake or Expand upon Transformational Enablers
- Autonomy
- Composite Structures
- More Electric Aircraft

Need Tools for More Rapid Innovation
- Virtual Testing
- V&V of Complex Systems

Demonstrate Low-Boom Supersonic Flight

Flight Research is a Critical Element of Technology Maturation and Public-Private Partnership
ARMD Strategic Implementation Plan

• Describes ARMD’s strategic management approach.
• Represents how ARMD aligns NASA’s aeronautics investments to achieve national goals.
• Articulates ARMD’s goals and strategies to provide guidance for program and project planning and execution.
• Establishes a context for measuring progress.
• Formalizes the use of Technical Challenges for strategic management of ARMD research.
Technical Challenge Example

Target: Eliminate turbofan engine interruptions, failures, and damage due to flight in high ice-crystal content clouds

<table>
<thead>
<tr>
<th>Technical Challenge Title & Description</th>
<th>Products/Deliverables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title = Engine Icing Characterization and Simulation</td>
<td>• Ice-crystal icing environment characterization (FY15)</td>
</tr>
<tr>
<td>Description = Develop knowledge bases, analysis methods, and simulation tools needed to address the</td>
<td>• Validate engine ice-crystal icing test methods and techniques (FY15)</td>
</tr>
<tr>
<td>problem of engine icing, in particular, ice-crystal icing</td>
<td>• Validate and verify icing codes to determine potential engine core ice accretion</td>
</tr>
<tr>
<td></td>
<td>sites and accretion rates (FY25)</td>
</tr>
<tr>
<td></td>
<td>• Validate and verify engine simulation codes to predict ice-degraded engine and</td>
</tr>
<tr>
<td></td>
<td>engine component performance (FY25)</td>
</tr>
</tbody>
</table>
3 Mega-Drivers

6 Strategic Research & Technology Thrusts

Safe, Efficient Growth in Global Operations
- Enable full NextGen and develop technologies to substantially reduce aircraft safety risks

Innovation in Commercial Supersonic Aircraft
- Achieve a low-boom standard

Ultra-Efficient Commercial Transports
- Pioneer technologies for big leaps in efficiency and environmental performance

Transition to Low-Carbon Propulsion
- Characterize drop-in alternative fuels and pioneer low-carbon propulsion technology

Real-Time System-Wide Safety Assurance
- Develop an integrated prototype of a real-time safety monitoring and assurance system

Assured Autonomy for Aviation Transformation
- Develop high impact aviation autonomy applications
The Committee endorses the approach that NASA ARMD is taking to establish a strategic direction to inform future research portfolio decisions. The Committee feels that the underlying process of utilizing strategic trends analysis, systems and portfolio analysis, and community/stakeholder engagement will enable ARMD to respond more effectively to new needs and new approaches to plan future research. The Committee notes that ARMD has made significant progress in an area which the Committee had commented on in a previous observation (regarding the use of systems analyses and trade studies to inform prioritization and advocacy of ARMD research - August 2011). The Committee looks forward to engaging with ARMD as their efforts mature and helping to inform the plan.
ISRP Portfolio

Integrated Systems Research Program (ISRP)

Goal
Pursue innovative solutions to high priority aeronautical needs and accelerate implementation by the aviation community through integrated system level research on promising concepts and technologies, demonstrated in a relevant environment.

- ISRP Projects have a finite resources and a finite life with defined project termination date
 - Environmentally Responsible Aviation Project will be completed at the end of FY2015
 - Unmanned Aircraft Systems Integration into the National Airspace System Project will be finished at the end of FY2016
Potential ISRP Future Projects

- Low-Boom Flight Demonstrator & Possible Other Testbeds
- Advanced Composites
- Autonomy Research
Autonomy Research

“Future aviation vehicles and systems (both manned and unmanned) will be more highly automated, and will require the implementation of software systems of varying degrees of complexity coupled with advanced hardware and communications capabilities. Thus, there is a need for research and development that will lead to an overall aviation system that can be operated safely with vehicle and systems of varying levels of autonomy. Autonomy has the potential to reduce costs, increase performance, productivity, safety, and efficiency and enable new operational models for aviation.” NASA Advisory Council Recommendation: Autonomy Research in Aviation

- An internal planning team will be developed to lay out the issues and potential NASA approaches to address the following areas:
 - Key technical barriers
 - Design issues with the human-machine interface
 - Approaches to test, evaluation and certification
 - NAS integration

- The National Academy of Sciences will perform a detailed study for ARMD of the research requirements to achieve autonomous systems from a National perspective, to ensure NASA has the best insight into what is occurring throughout the aerospace and other industries today and what the full set of research challenges are.
Aeronautics and Space Engineering Board (ASEB) proposes to establish an ad-hoc study committee to develop a national agenda for autonomy in civil aviation, comprised of a prioritized set of integrated and comprehensive technical goals and objectives of importance to the civil aeronautics community and the nation.

Study plan developed with input from NASA, FAA, and USAF

Reference existing national/federal guidance on federal investments in R&D related to autonomy:
- National Aeronautics R&D plan
- JPDO Integrated Work Plan for NextGen
- DOD (Defense Science Board, other documents)
- NRC Decadal Survey of Civil Aeronautics

Intent is to understand existing state of the art and ongoing R&D in autonomy for aerospace and other applications.

Possible NAC/NRC committee interaction during data collection phases (Second and/or Third meeting)?
• Meeting 1 (Dec 2011): Overview of the NASA UAS in the NAS Project
• Meeting 2 (June 2012): More detailed look at the project
• Meeting 3 (Oct 2012): FAA Context
 – Rick Prosek, FAA UAS
 – Sabrina Saunders-Hodge, FAA ANG-C2
 – Maureen Keegan, Joint Program and Development Office (JPDO)
 – Dr. Wanke, MITRE
• Meeting 4 (February 2013): FAA Aviation Rulemaking Committee (ARC) & JPDO Coordination
 – Ed Waggoner – UAS ARC & NASA Integration
 – Debra Randall – Systems Engineering update
 – Yuri Gawdiak, NASA Assignee to JPDO, Future Aircraft Integration with NEXTGEN
• Meeting 5 (May 2013)
• Meeting 6 (July 2013)
UAS Subcommittee Members

- Dr. John Langford (Chair) - Aurora Flight Sciences
- Ms. Rose Mooney - Archangel Aero LLC
- Dr. Brian Argrow - University of Colorado
- Dr. Eric Johnson - Georgia Institute of Technology
- Mr. Nick Sabatini - Nick Sabatini & Associates
- Dr. Steve Sliwa (2011-2012) - Morning Wings LLC
- Dr. Dave Vos (formerly Rockwell Collins)
- Ms. Lynn Ray - FAA
- COL Dean Bushey - US Air Force
Major Discussion Topics, February

• Relationship between NASA Project and the FAA UAS Aviation Rulemaking Committee (ARC) work
 – Project is tightly aligned with the work of the UAS ARC and its timelines
 – Project personal assisting with specific working groups, particularly the Implementation Planning Working Group (IPWG)

• Role of Systems Engineering in designing & informing Project Task Elements

• UAS Systems Analysis Work
 – NASA sponsored analysis performed by the Joint Planning and Development Office (JPDO) Interagency Portfolio and Systems Analysis (IPSA) Division
 – Flight projections and business case preliminary results show that the impact of UAS will be significant.
Milestones & Funding Gaps

System Certification Criteria & MOCs

- **FY13**
 - Q1: Certification Approach Whitepaper
 - Q4: Restriction Cert Program

- **FY14**
 - Q1: Airplane Design Criteria Handbook
 - Q2: Airplane Certification Pathfinder
 - Q4: Implementation AC and Order

- **FY15**
 - Q1: Rotorcraft Design Criteria Handbook
 - Q2: Rotorcraft Certification Pathfinder
 - Q3: SAA & C2 Perf Std for A, E & G Airspace

- **FY16**
 - Q1: Certification Courses
 - Q2: Update FARs

- **FY17**
 - Q3: SAA & C2 Perf Stds for all Airspace Classes

Safety Criteria & MOA

- **FY13**
 - Q1: UAS Safety Approach Whitepaper
 - Q2: FAA Safety Policy Paper

- **FY14**
 - Q2: Defined Safety Level
 - Q3: Defined Safety Allocations

- **FY15**
 - Q1: Defined Safety Tracking Metrics
 - Q4: Final Safety Criteria & MOAs

- **FY16**
 - Q1: Interim Safety Guidelines
 - Q2: Safety Requirements Handbook

- **FY17**
 - Q1: Final Safety Criteria & MOAs
 - Q2: Final Safety Criteria & MOAs

Security Criteria & MOA

- **FY13**
 - Q1: Security Concepts Whitepaper
 - Q2: Security Scope Whitepaper

- **FY14**
 - Q1: Security Approach Whitepaper
 - Q3: Threats and Vulnerabilities

- **FY15**
 - Q2: Security Approach Whitepaper
 - Q4: Final Safety Criteria & MOAs

Pilot/Crew Qualifications

- **FY13**
 - Q1: Pilot/Crew Keeping Rqmts
 - Q2: UAS Simulator Design Rqmts

- **FY14**
 - Q2: UAS Record Keeping Rqmts
 - Q3: UAS Crew Qual. Rqmts

- **FY15**
 - Q1: UAS Instructor Qual. Rqmts
 - Q2: UAS Medical Cert. Rqmts

Airspace Management Policies & Procedures

- **FY13**
 - Q1: Airspace needs Determined
 - Q2: Operational Impact Gap Analysis

- **FY14**
 - Q2: Operational Impact Gap Analysis
 - Q3: S/MS Demo

- **FY15**
 - Q1: Operational Impact Gap Analysis
 - Q2: Finalize Impl Doc & Proc

- **FY16**
 - Q1: EIP Completed (Grp 6/6 UAS in Class A)
 - Q2: EIP Effectiveness Assessment

Operational & Operator Criteria & MOCs

- **FY13**
 - Q1: FAA Orders Published
 - Q2: DO-178C sUAS Strategy Implemented

- **FY14**
 - Q1: UAS Training Completed
 - Q2: FARs and AIM Updated

- **FY15**
 - Q1: Use of sUAS in Arctic/Expanded
 - Q2: sUAS Operational Rqmts Updated

Enabling Activities

- **GBSAA IDC**
 - MIL-HDBK-516 Update
 - NASA Classification Approaches Report

- **UAS TCRD**
 - Maint. / Reliability

- **ABSAA IOC (Due Regard)**
 - NASA Final Report on Airspace Integration

UAS NAS Access Phases:

- **Accommodate**
- **Integrate**
- **Evolve**
NASA Project Contributions

Fiscal Year

Quarter

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>FY13 Q1</th>
<th>FY14 Q1</th>
<th>FY15 Q1</th>
<th>FY16 Q1</th>
<th>FY17 Q1</th>
<th>FY18 Q1</th>
<th>FY19 Q1</th>
<th>FY20 Q1</th>
<th>FY21 Q1</th>
<th>FY22 Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

System Certification Criteria & MOCs

- Certification Approach Whitepaper
- Airplane Design Criteria Whitepaper
- Rotorcraft Design Criteria Whitepaper
- Airship Design Criteria Whitepaper
- Restricted Cert Program
- Implementation AC and Order
- SAA & C2 Perf Stds for A, E & G Airspace
- Airship Cert Pathfinder
- FAA Safety Policy Paper
- Defined Safety Level
- Defined Safety Allocations
- Defined Safety Methodologies
- Interim Safety Guidelines
- Final Safety Criteria & MOAs
- Security Concepts Whitepaper
- Security Scope Whitepaper
- Threats and Whitepaper
- Vulnerabilities Whitepaper
- Hazard Identification Whitepaper
- Security Requirements Handbook
- Security Approach Whitepaper
- Security Record Keeping
- UAS Simulator Design Rqmts
- UAS Instructor Qual. Rqmts
- UAS Medical Cert. Rqmts
- UAS FSTD/DIMS Handbook

Safety Criteria & MOA

- FAA Safety Policy Paper
- Defined Safety Level
- Defined Safety Allocations
- Defined Safety Methodologies
- Interim Safety Guidelines
- Final Safety Criteria & MOAs
- Security Concepts Whitepaper
- Security Scope Whitepaper
- Threats and Whitepaper
- Vulnerabilities Whitepaper
- Hazard Identification Whitepaper
- Security Requirements Handbook
- Security Approach Whitepaper
- Security Record Keeping
- UAS Simulator Design Rqmts
- UAS Instructor Qual. Rqmts
- UAS Medical Cert. Rqmts
- UAS FSTD/DIMS Handbook

Pilot / Crew Qualifications

- Pilot/Crew Approach Whitepaper
- UAS Record Keeping
- UAS Simulator Design Rqmts
- UAS Instructor Qual. Rqmts
- UAS Medical Cert. Rqmts
- UAS FSTD/DIMS Handbook

Airspace Management Policies & Procedures

- Airspace needs determined
- Operational Impact Gap Analysis
- S MS
- Demo
- Training
- Finalize Implt Doc & Proc
- Changes to Automation
- Auto changes added to pipeline
- Training, Playbooks
- Service Providers Trained
- FIP Completed & Coordinated

Operational & Operator Criteria & MOCs

- Operations Approach Whitepaper
- SUAS Rule & ASTM Standards Published
- FAA Orders Published
- UAS Training Completed
- Use of sUAS in Arctic Expanded
- sUAS Operational Rqmts Updated
- FARs and AIM Updated

Enabling Activities

- GBSAA IOC
- MIL-HDBK-516 Update
- NASA Classification Approaches Report
- UAS TCRD Maint. / Reliability
- GBSAA IOC
- NASA Final Report on Airspace Integration
- NASA Final Report on Standards/Regulations

UAS NAS Access Phases:

- **Accommodate**
- **Integrate**
- **Evolve**

Note: Acronyms can be found on the Notes Page associated with this slide.
Short Title of the Proposed Recommendation:
UAS in the NAS Project Demonstration Mission

Short Description of the Proposed Recommendation:
The NASA UAS in the NAS Project plans as part of their Phase II a variety of flight tests to validate concepts developed as part of their research. The Committee recommends that in addition to these flight tests, one or more “capstone” demonstrations be incorporated into the program plan. These “graduation exercises” should serve to pull together and focus multiple research threads, and provide a compelling test or demonstration that the programs various stakeholders will find compelling and convincing.

Major Reasons for Proposing the Recommendation:
The Committee is concerned that sufficient impact is made as a result of the project’s research. These capstone demonstrations would find their way onto the integrated master plan, and would ideally involve both NASA and outside participants, demonstrating the access barriers broken down as a result of the NASA research.

Consequences of No Action on the Proposed Recommendation:
Absent compelling capstone events, the various research elements may never achieve the desired synergy.
Using industry forecasts of UAS aircraft from the Radio Technical Commission for Aeronautics (RTCA), as well as Joint Program and Development Office (JPDO) estimates, the Interagency Program and Systems Analysis (IPSA) Division produced three UAS “flight data sets”

The forecast data provided information about UAS aircraft counts which were translated into actual flights

IPSA UAS flight projections, although consistent with the data sources, are subject to uncertainties
Comparing Flight Counts from RTCA and IPSA

- Law enforcement / surveillance is the largest source of demand for UAS flights in the IPSA forecast
- IPSA forecast did not consider the military market, i.e. military UAS’ using civilian airspace
As part of IPSA, the UAS Business Case Analysis Team was asked to quantify the potential scale and benefits associated with the civilian and commercial markets for UAS vehicles.

Four specific business case scenarios were completed in FY12 and were selected for study to complement the work completed by the JPDO UAS Coordination Team.

All results should be considered preliminary, as they have not yet been veted by the larger community of UAS experts. These results will serve as a starting point for discussions around the use and future of UAS vehicles in the NAS.
Preliminary Business Case Results

<table>
<thead>
<tr>
<th>UAS Mission</th>
<th>Baseline Vehicle</th>
<th>Test Case Vehicle</th>
<th>$NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline Inspection</td>
<td>• Piston Fixed-Wing</td>
<td>• ScanEagle UAS</td>
<td>$43.1 Million</td>
</tr>
<tr>
<td></td>
<td>• Piston & Turbine Rotorcraft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Law Enforcement</td>
<td>• Piston Fixed-Wing</td>
<td>• Honeywell RQ-16 T-Hawk</td>
<td>$3.5 Billion</td>
</tr>
<tr>
<td></td>
<td>• Piston & Turbine Rotorcraft</td>
<td>• Aerovironment Raven</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-Sized Cargo</td>
<td>• Cessna 208 Grand Caravan</td>
<td>• Unmanned Cessna 208 Grand Caravan Retrofit</td>
<td>$6.0 Million</td>
</tr>
<tr>
<td>Border Patrol</td>
<td>• Variety of Manned</td>
<td>• Predator-B/Repear UAS</td>
<td>Flight hours equal to 150% of baseline*</td>
</tr>
<tr>
<td></td>
<td>Piston & Turbine Aircraft</td>
<td>• ScanEagle UAS</td>
<td></td>
</tr>
<tr>
<td>Site Security</td>
<td>• Manned Security Patrons</td>
<td>• DraganFlyer X6 Unmanned Quadcopter</td>
<td>Forthcoming</td>
</tr>
</tbody>
</table>

* On average; a number of different scenarios were run in this analysis.
General UAS Market Model – Preliminary Results

Preliminary Market Model Results

UAS Market Size and Net Benefits, 2015 - 2050
The Committee would like to commend the UAS Systems Analysis work that NASA is supporting through the Joint Program and Development Office (JPDO). The business analysis and future flight data modeling is highly necessary work and of great benefit to the community. While the analysis is preliminary, it is a good starting point and clearly illustrates UAS will have a significant impact on the NAS. The Subcommittee strongly encourages NASA and the UAS Project to continue supporting and expanding this important effort throughout Phase II. This work should also be fed back directly into Phase II planning, to focus and enlighten the planning of the next phase research elements.