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Motivation

The cost of human space flight
today is prohibitive.

Cost is a major impediment to the frequency
and duration of future exploration missions.

What is needed is to reduce the cost of human
spaceflight by an order of magnitude.

We need a new approach to sustaining humans
In space.




Habitat Water Walls Architecture

« Our approach integrates
life support,
thermal,
structural,
and radiation protection oy
functions into the walls of the spacecraft.

« We achieve a mass savings by combining the mass
and function of all subsystems within the mass
allocation of a radiation protection water wall.



The Need for Radiation Protection
Calculated for an ISS Aluminum Module
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Water Walls Applied to a TransHab-type Inflatable Module




Radiation Protection

Providing “parasitic” radiation protection is
prohibitively massive and expensive.

+ For a 240 day deep space mission with 150 mSv career dose limit and an
ISS derived cylindrical habitat will be required.

+ For the same mission where solar radiation protection is all that is
required a 20 cm thick water wall in an ISS sized element will require
more than Kgs of water

But do we need to provide this water from Earth?

+ A 6 person crew producing 15 I/person-day of wastewater with a 80%
recovery ratio will produce 6500 Kg/year of wastewater.

+ It would require 4 years of operation to accumulate enough water to
provide asolar water wall for a single ISS element.



Life Support Equivalent System Mass
(ESM) DURATIONS

Equivalent System Mass and Metric Values for a Range of Missions and Technologies

Baseline @ Advanced
Technology Technology ELS
ESM ESM R&TD
Mission / Vehicle [kg] [keg] Metric

Near-Term Exploration Mission: 19,973 13,553
Crew Exploration Vehicle 31316 2,258
Lunar Surface Access Module 2,323 1,982

Lunar Qutpost 14,334 0,313

Independent Exploration Mission: 29,208
Mars Transit Vehicle 10,890
Mars Descent / Ascent Lander 3,039

Surface Habitat Lander 15,279




Reliability for Long Duration Missions
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Experience from operation of the life
support system on Mir and ISS has
demonstrated significant reliability issues
for conventional systems.

The Water Walls concept uses a more passive approach than the
mechanical systems used on ISS




Reliability — A More Passive Approach to
Life Support is Better than all Mechanical

Nature uses no compressors, evaporators, lithium hydroxide
canisters, oxygen candles, or urine processors to revitalize our
atmosphere, clean our water, process our wastes, and grow our
food.

Conventional NASA approach is to use electro-mechanical
systems which tend to be failure prone ..

In comparison, Nature’s passive systems do not depend upon
machines and provide sufficient redundancies so that failure is not

a problem.

The Water Wall concept takes an analogous approach that is
biologically and chemically passive and massively redundant.



Water Walls Modular Construction
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Water Walls Functional Flow Life Support System Architecture
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CLEAN WATER STORAGE
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Allocation of Life Support Functions to
Water Walls Elements

TABLE 1. Water Walls Life Support Functions and Systemic Redundancies
WW Primary Functions Algae Blackwater/ PEM Urine/ Humidity &
(Based on Inputs and Outputs) Growth Bag Solids Bag [ UTEReH | H20 Bag Thermal Bag
02 Revitalization ]
CO2 Removal ]
X

X
X
Denitrification/Liberation of N2
Clean Water Production
X
X

X
-
Urine & Graywater Processing ]
X
_

X
X
Semi-Volatile Removal
Blackwater Processing
Humidity & Thermal Control
Nutritional Supplement Production X

Electrical Power Production ]

| O2Revitalization I
| Denitrification/Liberation of N2 |
| Clean Water Production X
| Semi-Volatile Removal I
| Humidity & Thermal Control I
| Nutritional Supplement Production | |
| Electrical Power Production | I

I
I
I
I
I
I

X




Development Approach

Fabricate and test functions,
processes and units at the bench
scale.

Scale up to a sub-scale functional
prototype such as a Forward
Osmosis bag.

Test Functional Prototypes in a
controlled (e.g. closed chamber)
and field environments.

Microgravity Flight Testing on
1SS, and

Integrated System Test in the
Bigelow Inflatable Module.




Core Air Revitalization Process: CO,
Sequestration & O, Production

Testing using OptiCells™ Cyanobacteria and
Synechococcus

= Cyanobacteria 53.6 mg CO, fixed L1 hrt, [
= Synechococcus 250 mg CO, fixed L hr-. ;

Future tests will use green alga Chlorella, and the edible
cyanobacterium Spirulina. As well as determining O,
production.

Algae/cyanobacteria needs to offset 1Kg CO,/person-day



Forward Osmosis: A Natural Process --
X-Pack ™ forward osmosis bag
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Example of Water Walls Research:
Reduction in flux as a function of the
number of times a bag has been reused.
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Data was taken after 4 hours of operation for each data point. Error bars are 11 %.



STS 135 Forward Osmosis Bag Flight Test




2013 New Design for Forward Osmosis Cargo
Transfer Bag (CTB) that Accommodates Flight
Demonstrations of Functional Cell Elements




Cargo Transfer Bag Placement in an ISS
Module for Functional Process Use and
Radiation Shielding




FO —CTB Field Tests at Desert-RATS

e

D-RATS 2012

D-RATS 2011



Results of D-Rats Field Tests Measured
Recycling Ability for Hygiene Water
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In the News: Inspiration Mars Fly-By 2018

New Scientist — 26 FEB 2013 - Taber
>Nk McCallum told New Scientist that solid and
“" - liquid human waste products would get put
WA into bags and used as a radiation
shield...”which is an idea already under
consideration by the agency's Innovative
Advanced Concepts programme, ... called
Water Walls, which combines life-support
and waste-processing systems with
radiation shielding. "

VIRAL all the way to the Colbert Report,
etc....
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Current Water Walls-Related Technology Development
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