Space Vectors

Background

This problem applies mathematical principles in NASA’s human spaceflight.

The Western Aeronautical Test Range (WATR), located at NASA Dryden Flight Research Center in Edwards, California, provides range engineering and technical expertise and resources to support aerospace research, science, and low-Earth orbiting missions. High-accuracy radar provides tracking and space positioning information on the International Space Station (ISS), as it has previously done with other research vehicles, such as the space shuttle.

During space shuttle missions, the WATR Aeronautical Tracking Facility (ATF) provided telemetry (information collected via radio waves), radar, voice communication, and video support of ISS and space shuttle activities to NASA Johnson Space Center in Houston, Texas using various telemetry tracking, space positioning, and audio communication systems.

The telemetry tracking system provided status information on the condition of the space shuttle (and the pilot’s point of view video when available) to the NASA network via satellite. When required, the telemetry systems also provided uplinked command data to the space shuttle.

The space positioning system consists of two high-accuracy radars, differential global positioning system ground stations, and Federal Aviation Administration surveillance radar data. This system was used to track every space shuttle orbit, relaying time-space positioning information from launch to landing. The space positioning system also tracked the ISS—from the day prior to the space shuttle launch and through the duration of the mission—providing critical information for the docking and undocking of the space shuttle.

Throughout each space shuttle mission, voice communication was enabled by the audio communication system. While a system of communication satellites used by NASA and other United States government agencies (known as the Tracking and Data Relay Satellite System, or TDRSS) provided the primary voice communication for the space shuttle, the WATR provided back-up support in
case of a communications failure during a mission. The WATR also became the primary means of communication support in the event a space shuttle might be diverted locally to Edwards Air Force Base for a landing.

Mission data from these three systems were processed near real-time, and were archived by NASA as a means of support for post-mission analyses.

Instructional Objectives

- You will transform spherical coordinates to Cartesian coordinates.
- You will represent 3D vectors in terms of \(\hat{i}, \hat{j}, \text{and} \hat{k} \).
- You will perform vector addition operations.

Problem

During a space shuttle flight, the Flight Dynamics Officer (FDO) monitors the location and performance of the space shuttle, both in atmosphere and orbit. This flight controller is in charge of the location and destination of the space shuttle. The FDO calculates orbital maneuvers and resulting trajectories using position and velocity vectors. Radar positioned at NASA Dryden Flight Research Center (FRC) in Edwards, California collects position data of the space shuttle.

Directions: Show all work and justify your answers. Answer questions 1–2 with your class. Label with the appropriate units.

1. Use Google Earth to find the location of the coordinates in Table 1. Enter your coordinates in terms of latitude and longitude. Remember that Google Earth divides the Earth into hemispheres with each being only 180 degrees. (For example: 40° S, 56° E)

2. Use Google Earth to find your school. Write the coordinates below using NASA’s naming conventions for longitude and latitude (which does not divide the Earth into hemispheres).

Table 1 shows the position of the FRC radar. NASA’s latitudinal radar readings are expressed in degrees north of the equator, while longitudinal radar readings are expressed in degrees east of the prime meridian. The FRC radius is the distance from the center of the Earth to the FRC itself.

<table>
<thead>
<tr>
<th>FRC Latitude ((\phi)) deg</th>
<th>FRC Longitude ((\lambda)) deg</th>
<th>FRC Radius ((r)) km</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.9607796</td>
<td>242.0885039</td>
<td>6378.889</td>
</tr>
</tbody>
</table>

In order to complete the vector analysis, azimuth, elevation, and range are also required. Azimuth is the horizontal angle of the radar measured clockwise from a line pointing due north. Elevation is the angle of the radar above the local horizon. Range is the distance along the geometric line-of-sight from the radar to the vehicle. Figure 3 is an illustration of these orbital terms.
Directions: Show all work and justify your answers. Round all answers to the nearest thousandth and label with the appropriate units.

3. The FRC data found in Table 1 was used to determine the vector that represented the position of the FRC site with respect to the Earth’s center in terms of \(\vec{i}, \vec{j}, \text{and} \vec{k} \).

Conversion equations (spherical to Cartesian coordinates)

\[
\begin{align*}
x &= r \cos \phi \cos \lambda \\
y &= r \cos \phi \sin \lambda \\
z &= r \sin \phi
\end{align*}
\]

\(r \) = FRC radius, \(\phi \) = latitude and \(\lambda \) = longitude

a. Find the \(x \)-coordinate of the FRC.
b. Find the y-coordinate of the FRC.

c. Find the z-coordinate where $\phi = \text{latitude}$.

d. Write the Earth-centered vector, \vec{f}_{ec}, in the form: $\vec{f}_{ec} = x\hat{i} + y\hat{j} + z\hat{k}$.

4. The FRC also collects data that can be used to determine the vector that represents the position of the space shuttle with respect to the FRC site in terms of \hat{i}, \hat{j}, and \hat{k}, where $El = \text{elevation}$ of the spacecraft, $Az = \text{azimuth}$, and $\rho = \text{range}$. Table 2 below shows the spherical coordinates for the space shuttle’s position.

<table>
<thead>
<tr>
<th>STS-131 FRC</th>
<th>STS-131 FRC</th>
<th>STS-131 FRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation angle (El) deg</td>
<td>Azimuth angle (Az) deg</td>
<td>Range to target (ρ) km</td>
</tr>
<tr>
<td>40.8300297</td>
<td>199.9850926</td>
<td>505.6889904</td>
</tr>
</tbody>
</table>

Note: Conversion equations (topodetic to Cartesian coordinates) relative to site located at (ϕ, λ)

Topodetic refers to a non-rotating frame of reference where the origin is the site location given by its longitude and latitude.

\[
\begin{align*}
x &= -\rho \cos(El) \cos(Az) \sin(\phi) \cos(\lambda) - \rho \cos(El) \sin(Az) \sin(\lambda) + \rho \sin(El) \cos(\phi) \cos(\lambda) \\
y &= -\rho \cos(El) \cos(Az) \sin(\phi) \sin(\lambda) + \rho \cos(El) \sin(Az) \cos(\lambda) + \rho \sin(El) \cos(\phi) \sin(\lambda) \\
z &= \rho \cos(El) \cos(Az) \cos(\phi) + \rho \sin(El) \sin(\phi)
\end{align*}
\]

$El = \text{elevation angle}$, $Az = \text{azimuth angle}$, $\rho = \text{range}$, $\phi = \text{latitude}$, and $\lambda = \text{longitude}$
a. Find the x-coordinate of the space shuttle’s position relative to FRC.

b. Find the y-coordinate of the space shuttle’s position relative to FRC.

c. Find the z-coordinate of the space shuttle’s position relative to FRC.

d. Write the site-centered vector, \vec{s}_{fc}, in the form: $\vec{s}_{fc} = x\hat{i} + y\hat{j} + z\hat{k}$.

Directions: Answer questions 5–6 with your partner. Discuss the answers to be sure that you both understand and agree on the solution. Round all answers to the nearest thousandth and label with the appropriate units.

5. With knowledge of the FRC site position and the space shuttle position (with respect to the FRC), the Flight Dynamics Officer can determine the space shuttle’s position with respect to the Earth’s center using vector addition. The resultant vector, \vec{s}_{ec}, gives the position of the space shuttle with respect to the Earth’s center. Find the Earth-centered position vector.

6. The radius of Earth is 6378.137 km. Find the space shuttle’s distance above Earth’s surface.
Directions: Complete question 7 independently. Round the answer to the nearest thousandth, and label with the appropriate units.

7. Using the FRC position vector (determined in Question 3 Part d), determine the Earth-centered position vector, \(\bar{s}_{ec} \), of the space shuttle if the radar site had reported an elevation of 30° and an azimuth of 150°. Then give the Earth-centered coordinates of the shuttle.

Find \(\bar{s}_{fc} \).

Find \(\bar{s}_{ec} \).