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SUMMARY 

 
Optical wing structures were theoretically and numerically analyzed, and prototype arrays of wings called 
optical flying carpets were fabricated with solar sail material clear polyimide (CP1).  This material was 
developed at NASA Langley to better withstand damaging ultraviolet radiation found in outer space.  
Various optical wing sizes and shapes were analyzed to develop design strategies for thrust and torque 
applications.  The developed ray-tracing model has undergone continual advancement, and stands as an 
effective tool for modeling most types of solar sails.  To our understanding, such a model does not exist 
elsewhere.  The distributed forces and torques have been reduced to a simple theoretical whereby the 
fundamental mechanics may be understood in terms of the numerically determined center of pressure 
offset from the center of mass.  This description applies to any type of solar sail, affording our ray-tracing 
model a general utility.  This research has established a foundation for understanding the force and torque 
afforded by optical wings.  The study began by considering transparent wings and ended by considering 
wings having a reflecting face.  The latter was found to afford the advantages of high thrust and both 
intrinsic and extrinsic torque.  Our discovery of the intrinsic torque on optical wings (meaning that a 
moment arm is not required) has no analogy for a flat reflective solar sail, and therefore provides an extra 
degree of control that may be useful for sailcraft attitude and navigation purposes. 
 
 
 

THEORETICAL 
 
Radiation pressure is exerted on an object owing to the absorption or redirection of electromagnetic 
momentum.  Redirected momentum is attributed to refraction, reflection, or re-emission of light.  
Assuming low loss, absorption and re-emission may be ignored.  Numerical methods are required to 
determine the force and torque exerted on a refractive and/or reflective body of arbitrary shape.  We have 
used both ray-tracing and wave-optics models to explore how basic elements, namely long cambered 
rods, are pushed and rotated when uniformly illuminated by a beam of light.  Following examples found 
in aeronautics, we have developed the theory of radiation pressure in terms of an applied center of 
pressure, thereby reducing a complicated system to an elegant formalism.  
 
Flat Reflecting Sail 
It is instructive to first consider the force and torque exerted on a uniformly illuminated flat reflective sail, 
as illustrated in Fig. 1.  Light directed along the x-axis (φ = π/2, θ = 0)  The is incident on the surface at 
angles θ and φ, resulting in a force that is normal to the surface: 
 

€ 

f = 2(IA / c)( ˆ n ⋅ ˆ x )2 ˆ n       (1) 
 
where 

€ 

ˆ n = sinφ cosθˆ x + ˆ y sinφ sinθˆ y + cosφˆ z  is the unit normal vector of the surface of area 

€ 

A .  The 

solar irradiance is given by 

€ 

I = L / 4πr2, where 

€ 

L = 385 × x1024  [J/s]  is the broad-spectrum solar 
luminous flux and 

€ 

r  is the distance from the sun.  At 

€ 

r = 1 [AU] = 150 × x109  [m] the maximum 
value of solar pressure is 

€ 

Pmax = 2I / c = 9.12 × 10−6  [N/m2 ] .  This pressure is roughly four orders 
of magnitude greater than the solar wind pressure [McInnes 1999, p. 54].    For a sailcraft of total mass m 
and sail area A, the acceleration is given by 

€ 

a = P /σ , where 

€ 

σ = m /A  is the areal density.  At 1 [AU] 
from the sun, the gravitational acceleration of the sun is 

€ 

asun = GM / r2 = 5.9 [mm/s2 ].  The sailcraft 

may experience an equal and opposite acceleration at an areal density 

€ 

σ 0 = P / asun = 1.54 [g/m2 ].  
Note that this value is independent of the distance from the sun, since both forces decrease inversely with 
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the squared distance.  From this gravitational point of view, the sailcraft acceleration may be expressed in 
terms of the “lightness” number 

€ 

β = σ0 /σ , mass of the sun 

€ 

MS , and gravitational const, G: 
 

  

€ 

 a = (βGM S / r2 )( ˆ n ⋅ ˆ x )2 ˆ n      (2) 
 
 

 
 

Figure 1.  Light incident in the x-direction on a perfectly reflective surface.  Reflected 
light produces a radiation pressure force in the direction f, normal to the surface. 

Radiation Pressure on an Arbitrary Body 
The net radiation pressure force on an arbitrary body may be expressed in terms of an efficiency vector, 

  

€ 

 
Q  whose magnitude is 

€ 

Q = 2  for a perfect sun-facing sail (φ = π/2, θ = 0): 
 

  

€ 

 
f = (IA / c)

 
Q        (3) 

 
Based on the conservation of momentum, we have determined that the optimal theoretical values of the 
longitudinal and transverse components of efficiency are given (assuming φ = π/2) by  
 

€ 

Qx,opt = 1 − cos(2θ ),     Qy,opt = sin(2θ )     (4) 
 
Figure 2 (left) shows these values plotted as a red circle, with the flat solar sail values plotted as a black 
ellipse.  We note that our calculated optimal value predicts a transverse efficiency as large as Qy = 1, 
whereas the flat sail can only achieve Qy = 0.77.  The latter occurs when θ ~35º, φ = π/2. 
 
The x-component of force may be called the “forward scattering” or “thrust” component, whereas the y-
component may be called the “lift” component.  The word “lift” refers to a force in a direction 
perpendicular to the flow of incident light.   
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Figure 2.  (a) Efficiency of radiation pressure force of a flat reflecting sail (blue arrows) 
does not achieve the theoretical limit (dark red circle) allowed by the conservation of 
momentum.  (b) Ray tracing for a trapezoid, shown at an angle of attack of 9°.  (c) Same 
at (a) but with the parametric efficiency curve for a trapezoid. (d) Lift efficiency as a 
function of angle of attack, showing lift values great than a flat reflector at 9°.  

 
A flat reflective sail cannot reach the theoretical maximum lift efficiency owing to the factor cosθ  that is 
attributed to the angle dependences of the sail cross-sectional area.  That is, a tilted sail collects less light 
to reflect.  This is depicted in Fig. 2(a).  A solution to this problem would be to design the sail cross-
section to be nearly sun-facing, while simultaneously deflecting the light perpendicular to the sun-line.  
This may allow the sail to perform at the physical limit (red line in Fig. 2 (a)).  We considered various 
means to enhance the lift efficiency using single or arrayed optical wings.  Although we found examples, 
such as the trapezoid in Fig. 2(b), where the lift force at a given angle of attack exceeded the lift force of a 
flat reflective sail at the same angle, we did not find examples exceeding the force vector ellipse, shown 
by the black line in Fig. 2 (a).  For example, when a funnel-like trapezoid have a reflective smaller rear 
surface is placed in the beam, we predict a constant forward scattering force for angles of attack over the 
range ±9° (see Fig. 2(c)) where the forward thrust efficiency is ~1.5 while the lift efficiency varies from 
±50%). What is more, this wing design provides more lift force than a comparable flat reflective sail, 
even though the trapezoid mirror surface is only 10% of that of a flat mirror. This means that the funnel-
wing could (1) more readily provide maneuvering action than a flat mirrored surface, and (2) vary the lift 
force without affecting the forward scattering force.  As this example illustrates, the shape of the wing 
may be tailored to suit a particular application over a range of orientation angles.  As we explored only a 
narrow region of parameter space, e.g., varying the wing cross-sectional shape (see Fig. 3) and refractive 
index, the results in Fig. 2 suggest that greater optimization of large lift efficiencies is possible. 
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Controlling the lift force is an import component in the navigation of a sailcraft.  For example, orbit-
raising or orbit-lowering can be achieved by accelerating or decelerating the sailcraft along an orbital 
trajectory. Precise maneuvering of the craft may also be desired – for example, in a mission to encounter 
space debris, or to maintain a formation relative to other crafts.  In many cases, it may be disadvantageous 
to tilt the entire sailcraft.  Various mechanisms, such as motor-driven tip vanes, and actuated ballast mass 
have been proposed to achieve fine-scale attitude control.  Here we have explored the feasibility of using 
optical wings to lift and torque a sailcraft. 
 
An optical wing is an analog to an airfoil.  It is a long structure having a cambered cross-section.  
Examples of optical wings are shown in Fig. 3.  In this study we assume the wings have a length greater 
than other dimensions, therefore reducing the problem to two dimensions.  We also assume they are 
composed of a non-absorbing homogenous, isotropic dielectric material of refractive index n.  In some 
cases we allow for a reflective coating on one of the facets. 
 

 
Figure 3.  Example of optical wing cross-sections.  Bodies may be refractive with 
optional reflective coatings over selected facets. 

 
The radiation pressure force and torque on such bodies will depend on the orientation or “angle of attack” 
relative to the incident beam of light.  Force and torque plots are discussed in the Numerical section.  
Here we discuss the mechanics of the wing for an arbitrary value of force and torque.  In general the 
“center of pressure” (cp) will be offset from the center of mass (cm), causing the body to rotate.  If the net 
force and torque is known at a given angle of attack, the center of pressure   

€ 

 r cp  is found by satisfying the 
expressions:   
 

  

€ 

 r cp ×
 
f =
 
T ,      r cp ⋅

 
f = 0      (5) 

 
Figure 4 depicts the centers of mass and pressure for a uniformly illuminated glass rod have a 
semicircular cross-section.  In this diagram, the wing has a scattering force (in the direction of the 
incident rays), an upward lift force, and a torque that rotates the body clockwise.  As shown in the right 
hand side of Fig. 4, the wing can assume different trajectories when the initial orientation is not in a 
rotationally stable equilibrium state. 
 

           
 

Figure 4.  Left:  Illustration of displaced centers of mass and pressure.  At this instant in 
time the body rotates clockwise and accelerates upward and to the right.  Right:  
Examples of the particle trajectory and orientation in a viscous medium for three different 
values of the refractive index of the wing. 
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If we desire torque-free forces, clearly the wing must operate at or near a position of stable rotational 
equilibrium.  As suggested by Eq. (5), this can occur when the center of pressure vector is parallel to the 
force vector (i.e., the line of force intersects the center of mass), or when the displacement between the 
centers of mass and pressure are vanishingly small.  To determine the stable rotational equilibrium 
positions, we must use numerical modeling, as analytical methods do not exist for this task. Examples of 
such modeling is described in the next section. 
 
In a zero-damping environment such as free space, an optical wing may rotationally oscillate about an 
equilibrium angle: 

€ 

Δθ (t) = θ (t) −θ eqlm ≈ Δθ 0 cos(ωt) , assuming a Hooke’s law restoring torque: 

€ 

T ≈ −kΔθ  for small values of 

€ 

Δθ 0 .  By actively driving the oscillations in a feedback loop, one may 
increase or decrease the amplitude of oscillation, 

€ 

Δθ 0 .  The frequency of oscillation is determined by the 
torsional stiffness, k, and the moment of inertia, Iwing: 

€ 

ω = k / Iwing .  From considerations of the 
torque about the edge of a flat mirror, we predict this frequency to roughly scale as 

€ 

ω0 = IL / cm = I / cρA  where A and ρ are the cross-sectional area and mass density of the wing, 
respectively.  For example, if I = 1 [kW/m2], ρ = 1g/cm3  = 10^3 kg/m2 then 

€ 

ω0 = (1/ 3)10−8[m2 / s2 ]A  (see plot in Fig. 5). 
 

 
Figure 5.  Frequency scaling as a function of an optical wing oscillator of cross-sectional 
area A. 
 

Once the torque and force are numerically determined for all possible angles of attack, the orientation and 
linear positions may be determined by numerical integration (e.g., 4th order Runge-Kutta): 
 

€ 

θ (t − t0 ) = θ t0 + ˙ θ t0 ⋅ (t − t0 ) + (1/ 2)˙ ̇ θ ⋅ (t − t0 )2

x(t − t0 ) = xt0 + ˙ x t0 ⋅ (t − t0 ) + (1 / 2)˙ ̇ x ⋅ (t − t0 )2

y(t − t0 ) = yt0 + ˙ y t0 ⋅ (t − t0 ) + (1/ 2)˙ ̇ y ⋅ (t − t0 )2

    (6) 

 
where 

€ 

˙ ̇ θ = T / Iwing , 

€ 

˙ ̇ x = fx / m , and 

€ 

˙ ̇ y = fy / m .  (Note that we have considered the two-dimensional 
case whereby other degrees of freedom are ignored.)  The numerically determined phase diagram for the 
angle of attack, 

€ 

θ , and the angular velocity,  

€ 

˙ θ , is shown in Fig. 6 for a semicircular wing having the flat 
side coated with a mirror.  Note the wide range of angles (±50°) over which the wing may rock back and 
forth.  The closed orbits in Fig. 6 may be made to spiral inward by synchronously illuminating or 
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shuttering the light reaching the wing.  A detailed report on oscillating optical wings is included in the 
supplementary material, “Refractive optical wing oscillators with one reflective surface.” 
 

 
 

Figure 6.  Phase diagram showing periodic (dark lines) rocking motion of a semicircular 
wing with a reflective flat side.   

 
 
When any of the dimensions of the wing approaches, or becomes less than the wavelength of light, the 
ray-tracing model must be replaced with a wave optics model.  This is necessary because interference 
phenomena may dominate the optical field.  Further, the concept of a ray cannot be applied for cases 
where the optical field varies over such short distance scales.  See supplementary material “Optical lift 
from dielectric semicylinders”. 
 
The net radiation pressure force and torque on an optical wing may be found by numerically summing 
over a large number of rays refracted and reflected from the surface: 
 

  

€ 

 
f =

 
f i∑ ,   
 
T =

 
T ex +

 
T in :   

 
T ex =

 r 0 ×
 
f ,   
 
T in =

 r i ×
 
f i∑    (7) 

 
where   

€ 

 
T ex  and   

€ 

 
T in  are respectively the extrinsic and intrinsic torque,   

€ 

 r 0  is a moment arm from the 
origin to the center of mass, and   

€ 

 r i  is a vector pointing from the center of mass of the wing to the surface 

where a ray produces a force,   

€ 

 
f i.   The intrinsic may arise when the center of mass and center of pressure 

are offset, e.g., when the wing is not at a position of stable rotation equilibrium.  Note that intrinsic torque 
is zero valued for a flat rectangular reflective sail. Optical wings therefore provide a distinct new 
component of attitude control for solar sails.  For example, an array of N wings (i.e., an optical flying 
carpet) may feel no extrinsic torque, but a multiplicative intrinsic torque.  That is: 
 

  

€ 

 
T ex,net = ( r 0, j ×

 
f j )

j=1

N
∑ = 0,       

 
T in,net =

 r i, j ×
 
f i,j∑

j=1

N
∑ = N

 
T in   (8) 

 
For an array of semicircular optical wings having a reflective flat side, the intrinsic torque will provide a 
restoring torque.  This may be particularly advantageous for a sun-facing solar sail mission such as a solar 
weather station at a sub-Lagrange point.  By matching the rocking period of the sail to the period of the 
halo orbit, no fuel or mechanical parts would be needed to maintain a sun-facing orientation.  Active 
electro-optic control methods may be used to increase or decrease angular excursions. 
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EXPERIMENTAL 
 
The first experimental realization of optical lift was demonstrated with single semi-cylindrical wings. 
This shape was selected for early investigations of optical lift because the semicircular profile is a 
simplified cambered shape. Our ray-tracing computer model indicates that other wing shapes will 
experience optical lift and stable lift orientations when exposed to uniform illumination. The first new 
wing shape to be fabricated was the rectangular rod, followed by arrays of joined semi-cylindrical wings. 
These two objects were fabricated using photolithographic techniques. The discussed fabrication methods 
produced these objects with expected regularity and only minor shape artifacts. Early tests of the 
rectangular optical wing indicated good agreement with computer model predictions. 
 
Following similar methodology as in the fabrication of semi-cylindrical optical wings, the new 
rectangular wings were made of patterned photoresist using photolithography. This process began with a 
1.5µm thick layer of OiR 620 positive photoresist spin-coated onto a blank silicon wafer. OiR 620 
photoresist was selected for its common use in photolithography with a refractive index of 1.6. The resist 
was then exposed to UV illumination with a GCA Stepper through a mask that defined the two-
dimensional length and width of each wing in an array of many sizes (see background image in Fig. A). 
The exposed wafer was then developed to wash away excess resist, and baked on a hot plate to further 
solidify the resist particles. Finally, the surface of the silicon was etched in xenon hexafluoride (XeF6) for 
10 hours. This released the photoresist particles, which were then collected with a surfactant-water bath. 
 

 

Figure A - SEM images of rectangle optical 
wings. Background image shows one set of 
wings increasing in size from the bottom of 
the image to the top. A sub-region is 
enlarged showing three 10 µm x 2 µm 
wings with measurements and spacing. 

 
These fabricated rectangular were tested in a simple apparatus for determining the optical lift force 
incident on these objects. The submerged particles were placed in a well that was illuminated from below 
with a 42mW, 975nm, collimated laser beam with a diameter of 50µm. The particles were imaged 
through a 40x objected by a video camera such that any transverse movements of an illuminated particle 
were recorded. This testing indicated that the wing rotated into a stable angle of attack at roughly 50° with 
an approximate lift force of 3.4 pN. The same wing parameters from Fig. A were inputted into the 
computer model to recreate the force and torque that this particle experienced. The computer model 
determined that this wing rotates into a stable orientation at 54° above the horizontal as shown in Fig. B. 
At this stable position, the lift angle (angle corresponding to the transverse component of total force on 
the object) is 30°. The model predicts a lift force of 4.6pN in an ideal liquid; however, in a real fluid the 
force would be expected to be less than this ideal case. These computer-modeling results indicate good 
agreement with the tested wing. 
 

2

(10.0 ± 0.1) µm 

(7.0 ± 0.1) µm 

(2.0 ± 0.1) µm 

Fig. 2. SEM images of rectangle optical wings. Background image shows
one set of rectangular wings that was repeated hundreds of times across the
silicon wafer. In this image, the wings increase in size from the bottom of
the image to the top of the image. A subregion is enlarged showing three
10µm× 2µm wings with their two-dimensional measurements and spacing.

C. Testing Results

The released rectangular wings submerged in a low-
surfactant, water solution were tested in a simple apparatus for
determining the optical lift force incident on these objects. The
submerged particles were placed in a well that was illuminated
from below with a 42mW , 975nm, collimated laser beam
with a diameter of 50µm. The particles were imaged through
a 40x objected by a video camera such that any transverse
movements of an illuminated particle were recorded. A particle
with the same geometric parameters as given in Fig. 2 is shown
moving with a lift force in Fig. 3. This figure is a time lapse
image of the moving particle. Each snap-shot of the particle
represents a delay of 3 1

3 seconds. In the first 13 seconds of the
video, given by the lower four images of the particle, the wing
experiences torque as it rotates into a stable orientation with
respect to the incident flux of radiation. The exact orientation
is hard to determine from this picture due to blurring and
low resolution of the particle images, but it is clear that the
particle is in a new orientation by the fourth image based on
the high contrast of its edges compared to earlier images. After
this point, the particle experiences a stronger lift force, but its
linear trajectory is interrupted by surface tension from the base
of the well. Therefore, the wing rotates clockwise because its
right edge moves slower due to surface tension. At the same
time, the left edge of the wing experiences greater scattering
force leading strong blur.

D. Comparison to Computer Models

The same wing parameters from sections II-B and II-C
were inputted into the computer model to recreate the force
and torque that this particle experienced. The computer model
determined that this wing rotates into a stable orientation at
54◦ above the horizontal as shown in Fig. 4. At this stable
position, the lift angle (angle corresponding to the transverse
component of total force on the object) is 30◦, and the figure

Fig. 3. An optical wing with the same size parameters as those in Fig. 2
experiences optical lift. This is a time-lapse image where the time delay
between each image of the particle is 3 1

3 seconds. Red vectors indicate
the magnitude and direction of the lift force, which results from uniform
illumination by an infrared laser beam coming out of the page with a diameter
of 50µm. The position indicated by the black arrow is the configuration
recreated by the computer model in Fig. 4.

of merit (slope of torque at stable orientation times lift force)
is 1.5. The model predicts a lift force of 4.6pN in an ideal
liquid; however, in a real fluid the force is expected to be less
than this ideal case. The measured lift force of the real wing
at this orientation was about 3.4pN .

Fig. 4. Two-dimensional ray plot generated by the computer model of the
rectangular wing from Fig. 3 in a stable orientation. Red lines are light rays,
blue line shows the direction and magnitude of total force on the particle, and
green lines show the momentum transfered from each ray. Black dashed-line
is an approximation to the plane imaged by the video camera leading to the
slightly asymmetric, high contrast edges in Fig. 3 where the arrow points.

III. SEMICYLINDRICAL FLYING CARPET

The flying carpets were fabricated using isotropic reactive
ion etching (RIE) to form a silicon mold. The mold was then
filled with a PDMS polymer (silicone elastomer) that was
lifted from the mold by hand. This isotropic RIE silicon mold
technique was first proposed by Ashenafi Mamo as part of his
Senior Design Project in Microelectronics Engineering at RIT
[6].



 9 

 

Figure B – Two-dimensional ray plot of 
rectangular wing from Fig. A generated by 
computer model. Red light rays are traveling 
upwards and are incident on the wing 
producing a total force given by the blue line. 
Black dashed-line is an approximation to the 
plane imaged by the video camera. 

 
Several iterations have been implemented in the early fabrication stages of arrays of semi-cylindrical 
wings. These arrays are fabricated using isotropic reactive ion etching (RIE) to form a silicon mold. In the 
first trial of this fabrication technique, the mold was filled with a PDMS polymer (silicone elastomer) that 
was lifted from the mold by hand. This is a hydrophobic polymer with a refractive index of about 1.4. The 
elastomer was selected because it may be spin coated onto the silicon mold, is easily cured, and is easily 
managed all at low cost.  
 
To make the silicon mold using the isotropic RIE technique a 1µm layer of thermal silicon dioxide was 
first grown on a silicon wafer. The oxide was then patterned with OiR 620 resist using photolithography 
leaving holes of exposed oxide with a range of feature sizes. Then the oxide was etched down in buffered 
oxide etch (BOE) for 9 minutes using the patterned resist as a mask. This exposed areas of the silicon 
wafer below. To achieve isotropic profiles in the silicon, the silicon was etched in the Drytek Quad with 
sulfur hexafluoride (SF6) using resist over oxide as an etching mask. In the first test of this process, three 
iterations of the Drytek etching step were implemented with different exposure times - 10, 15, and 20 
minutes - all at 240 W of power, 60 mTorr of pressure, and 20 sccm of gas flow. The resist on top the 
oxide was cleared away in this step, and the remaining oxide was then removed again in BOE for 10 
minutes leaving behind a clean silicon mold with arrays of wells. Lastly, the mold was filled with PDMS. 
The wafer was then degassed for 30 minutes, baked on a hot plate at 70° Celsius for 3.5 hours, and 
allowed to rest over night before it was peeled off the silicone substrate by hand. The process is 
pictorially described in Fig. C where CP1 (Colorless Polyimide 1) has taken the place of the PDMS 
elastomer.  
 

  

Figure C – Pictorial description of steps in 
fabrication of silicon mold for making semi-
cylindrical wing arrays. 

 

2

(10.0 ± 0.1) µm 

(7.0 ± 0.1) µm 

(2.0 ± 0.1) µm 

Fig. 2. SEM images of rectangle optical wings. Background image shows
one set of rectangular wings that was repeated hundreds of times across the
silicon wafer. In this image, the wings increase in size from the bottom of
the image to the top of the image. A subregion is enlarged showing three
10µm× 2µm wings with their two-dimensional measurements and spacing.

C. Testing Results

The released rectangular wings submerged in a low-
surfactant, water solution were tested in a simple apparatus for
determining the optical lift force incident on these objects. The
submerged particles were placed in a well that was illuminated
from below with a 42mW , 975nm, collimated laser beam
with a diameter of 50µm. The particles were imaged through
a 40x objected by a video camera such that any transverse
movements of an illuminated particle were recorded. A particle
with the same geometric parameters as given in Fig. 2 is shown
moving with a lift force in Fig. 3. This figure is a time lapse
image of the moving particle. Each snap-shot of the particle
represents a delay of 3 1

3 seconds. In the first 13 seconds of the
video, given by the lower four images of the particle, the wing
experiences torque as it rotates into a stable orientation with
respect to the incident flux of radiation. The exact orientation
is hard to determine from this picture due to blurring and
low resolution of the particle images, but it is clear that the
particle is in a new orientation by the fourth image based on
the high contrast of its edges compared to earlier images. After
this point, the particle experiences a stronger lift force, but its
linear trajectory is interrupted by surface tension from the base
of the well. Therefore, the wing rotates clockwise because its
right edge moves slower due to surface tension. At the same
time, the left edge of the wing experiences greater scattering
force leading strong blur.

D. Comparison to Computer Models

The same wing parameters from sections II-B and II-C
were inputted into the computer model to recreate the force
and torque that this particle experienced. The computer model
determined that this wing rotates into a stable orientation at
54◦ above the horizontal as shown in Fig. 4. At this stable
position, the lift angle (angle corresponding to the transverse
component of total force on the object) is 30◦, and the figure

Fig. 3. An optical wing with the same size parameters as those in Fig. 2
experiences optical lift. This is a time-lapse image where the time delay
between each image of the particle is 3 1

3 seconds. Red vectors indicate
the magnitude and direction of the lift force, which results from uniform
illumination by an infrared laser beam coming out of the page with a diameter
of 50µm. The position indicated by the black arrow is the configuration
recreated by the computer model in Fig. 4.

of merit (slope of torque at stable orientation times lift force)
is 1.5. The model predicts a lift force of 4.6pN in an ideal
liquid; however, in a real fluid the force is expected to be less
than this ideal case. The measured lift force of the real wing
at this orientation was about 3.4pN .

Fig. 4. Two-dimensional ray plot generated by the computer model of the
rectangular wing from Fig. 3 in a stable orientation. Red lines are light rays,
blue line shows the direction and magnitude of total force on the particle, and
green lines show the momentum transfered from each ray. Black dashed-line
is an approximation to the plane imaged by the video camera leading to the
slightly asymmetric, high contrast edges in Fig. 3 where the arrow points.

III. SEMICYLINDRICAL FLYING CARPET

The flying carpets were fabricated using isotropic reactive
ion etching (RIE) to form a silicon mold. The mold was then
filled with a PDMS polymer (silicone elastomer) that was
lifted from the mold by hand. This isotropic RIE silicon mold
technique was first proposed by Ashenafi Mamo as part of his
Senior Design Project in Microelectronics Engineering at RIT
[6].
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In the first trial with PDMS, the RIE technique did generate curved features in the silicon wafer, but the 
degree of curvature was small relative to the width of the features. This is due to aspect ratio dependent 
etching (ARDE), meaning much longer etch times would be needed to achieve semicircular profiles of 
this size. Smaller features are easily fabricated by the RIE process, but larger features require very long 
etch times that would destroy the oxide mask as occurred with the 20 minute wafer. In demolding the 
PDMS carpets, the polymer partially adhered to the silicon wafer, tearing the carpets, and leaving a spotty 
residue on the silicon. 
 
After the first trial which produced oversized features as discussed, we successfully fabricated 180µm x 
300µm x 370µm thick carpets with semi-cylindrical features that are 180µm long, 30µm wide, and 50µm 
tall. Fig. D below is a microscopic image of a silicon elastomer carpet. Though inexpensive and easy to 
work with, silicon elastomer is not a good material for fabrication of flying carpets because it is difficult 
to thin the substrate to less than 50µm and because the material breaks with defects as seen in Fig. D. At 
the first NAIC meeting, a chemist from NASA Langley informed us of the LARC-CP1 polyimide 
developed for solar sails. This material is more favorable for the fabrication of flying carpets because it is 
ultra-lightweight. It too may be spun onto the mold and released by hand. 
 

 

Figure D – 50x microscopic 
image of the smallest fabricated 
flying carpet mad out of silicon 
elastomer. Defects in the semi-
cylindrical features are due to 
tearing of the elastomer while 
releasing it from the mold. 

 
 
The first successful fabrication of a wing array made from CP1 was achieved near the end of the Phase I 
project. A 20x microscope image of these arrays on a 50 µm substrate is given in Fig. E. In addition 
before the end of the Phase I project, we designed a specialized mask for carpets including 1 cm2, 1 mm2, 
and 500 mm2 linear arrays of 20 mm and 40 mm long semi-cylindrical rods with 10 and 20 µm radii. 
 

 

Figure E – 20x microscope image of 
first fabrication of CP1 arrays of semi-
cylindrical wings on top a 50 mm 
substrate with 20 mm radii. 

 
At the end of the Phase I project, two fabrication goals were set: 1) to decrease the substrate thickness of 
the CP1 arrays by improving the recipe for spin coating the resin onto the silicon mold, and 2) to fabricate 
single wings and arrays with mirrored back surfaces. A proposed recipe for the fabrication of these 
mirrored wing arrays is given in Fig. F. 
 

NIAC Bimonthly Status Report 
January 27, 2012 
 
In the last two months our team has made significant headway in two fronts – modeling 
and fabrication.  Both tasks are essential to the project goal to show that flying carpets 
can be fabricated and will experience a lift force due to uniform illumination. Flying 
carpets are large arrays of lightfoils, or microscopic, transparent objects that experience a 
force transverse to the direction of incident, uniform illumination. 
 
In order to understand how cross-sectional shape of a lightfoil affects the stability and 
strength of optical lift, several basic shapes were modeled in an optical lift environment. 
For simplification, in this study all lightfoils were designed as rods with various cross-
sections, and were analyzed without considering affects from friction or gravity. We 
modeled four basic cross-sectional shapes: the triangle, rectangle, trapezoid, and 
semicircle. Varying parameters in the models were aspect ratio, area, and refractive 
index. These models confirm our initial hypothesis that lightfoils with semicircular cross-
sections are the best choice for fabrication out of the basic shapes for their strong 
stability, limited number of stable angles, and large lift force. The next stage for 
modeling is to analyze more complicated shapes such as skewed variations of the 
semicircle and non-uniformity in the third dimension to generate three-dimensional 
shapes such as semi-ellipsoids. 
 
At the last NAIC meeting in November, we presented the very first generation of 
fabricated flying carpets made from silicon elastomer. These carpets were several times 
larger than target size for testing as a trial for the fabrication process. Since then we have 
successfully fabricated 180µm x 300µm x 370µm thick carpets with semi-cylindrical 
features that are 180µm long, 30µm wide, and 50µm tall. Figure 1 below is a microscopic 
image of a new silicon elastomer carpet. Though inexpensive and easy to work with, 
silicon elastomer is not a good material for fabrication of flying carpets because it is 
difficult to thin the substrate to less than 50µm and because the material breaks with 
defects as seen in Figure 1. At the NAIC meeting, a chemist from NASA Langley 
informed us of the LARC-CP1 polyimide developed for solar sails. This material is more 
favorable for the fabrication of flying carpets because it is ultra-lightweight, it may be 
spun onto the mold, and is easily released from the mold in water. Our order of CP1 resin 
has just arrived, and our next step will be carpet fabrication with this material. 

180 microns 

30 microns Figure 1:  50x microscopic 
image of the smallest 
fabricated flying carpet made 
out of silicon elastomer. 
Defects in the semi-
cylindrical features are due to 
tearing of the elastomer while 
releasing it from the mold. 
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Figure F – Fabrication of mirrored wing arrays follows the same steps as were done for non-mirrored 
arrays with the addition of a second photoresist patterning of aluminum that would be sputtered onto the 
back side of CP1 substrate before releasing from the mold. Al etch would be done in a 16:1:1:2 bath of 
Nitric Acid, Acetic Acid, Phosphoric Acid and water, and excess resist would be removed in NMP (1-
Methyl-2-pyrrolidon) solvent. 
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A wave optics numerical analysis of the force and torque on a semicylindrical optical wing is presented. Compar-
isons with a recently reported ray optics analysis indicate good agreement when the radius is large compared with
the wavelength of light, as expected. Surprisingly, we find that the dominant rotationally stable angle of attack at
α ≈ −15° is relatively invariant to changes in radius and refractive index. However, the torsional stiffness at the equi-
librium point is found to increase, approximately, as the cubic power of the radius. Quasi-resonant internal modes
of light produce complex size-dependent variations of the angle and magnitude of the optical lift force. © 2012
Optical Society of America
OCIS codes: 350.4855, 350.6090, 350.6050, 350.3950.

A body in a uniform flow that experiences a force com-
ponent perpendicular to the flow direction is said to ex-
perience lift. If, in addition to experiencing a lift force, the
body also achieves a stable orientation, it is said to be
undergoing “stable lift.” In a recent article [1], an optical
variant of stable lift was demonstrated for dielectric
semicylinders, or lightfoils, exposed to plane wave illu-
mination. Stable optical lift may be useful for propelling
microscopic tissues through liquids, or for navigational
and attitude control of solar sails in outer space. Here,
we investigate the effect with rigorous electromagnetic
calculations, ignoring viscous drag and gravity.
We consider, in two dimensions, a uniformly illumi-

nated dielectric semicylinder of radius a and refractive
index n with a host material of index n0 � 1. We arbitra-
rily set the wavelength in the host material to λ �
800 nm, but note that the results presented are more
generally applicable, owing to the scale invariance of
Maxwells equations [2]; for n0 ≠ 1, the light foil index, n,
must be replaced by n ∕n0, the quoted radii by a ∕n0; and
the forces and torques by n0f , n0t, respectively [3].
A schematic showing the axes and angles used is pro-

vided in Fig. 1. The lift force is given by the component
f y � jf j sin ϕf , whereas the scattering force may be writ-
ten f x � jf j cos ϕf , where ϕf is the lift angle. The orien-
tation of the lightfoil is represented by the angle of attack,
α; the origin of coordinates is coincident with the center
of mass. The forces and torques quoted are given as ra-
tios of the lightfoil length, L (μm), in the z direction, for
an incident wave carrying I � 1 mW ∕μm2. In these units,
a light foil experiencing a force of 1 pN per μm radius, per
μm length has an optical force efficiency, Q � cf ∕I, of
c ∕109 ≈ 0.30 or 30% compared with an ideal mirror of
efficiency 2 or 200%.
Optical scattering from semicylinders has previously

been studied analytically, under restricted conditions [4].
Here, we apply the generalized multipole method [5,6]
with cylindrical vector wave functions [7]. Forces and
torques are evaluated by integrating the Maxwell stress
tensor over a surface enclosing the lightfoil [3,8]. Stable
orientations (αeqm) are found by considering the variation
of axial torque (tz) with lightfoil orientation (α), locating
the angles at which tz vanishes and confirming that tz is

locally restoring. We note that, in general, the stability of
a rigid body depends on coupling between translational
and rotational motion [9]. However, under plane wave
illumination, and in vacuo, translations cannot produce
rotations and the condition that the torque is restoring
is both necessary and sufficient for stability in two di-
mensions. Since elongated dielectric objects seek to align
themselves with the electric polarization direction [10],
attention is restricted to the transverse electric case, with
the electric field polarized in the z direction.

Figure 2 shows the ratios f x;y ∕La and tz ∕La2 as func-
tions of α, for lightfoils with n � 1.3, and various radii, a.
For scaling purposes, the length of the cylinder is taken
to be L � 1 μm. Three effects are evident. First, for larger
radii, the curves tend to converge, indicating that the
forces increase in proportion to La, and the torque in-
creases as La2. Second, when the light is incident on
the flat surface of the lightfoil (0 < α < 180°), forces
and torques become increasingly oscillatory as the radius
is increased. Finally, several equilibrium orientations
are evident in each case. When α � �90°, there is no lift
force, owing to symmetry, and what is more, the lightfoil
is in an unstable rotational equilibrium state (i.e.,
dtz ∕dα > 0). In contrast, a strong restoring torque with
dtz ∕dα < 0 produces a stable rotational equilibrium at
α ≈ −15°. Ray optics calculations [1] are also shown in
the figure. In this case, size effects are neglected and
the oscillations in the forces and torques that arise
due to interference and diffraction do not appear.

In order to quantify these observations, it is necessary
to isolate the equilibria of interest and evaluate the ex-
cess force in the stable orientation. Results for lightfoils

k

f
y

xz
α

φfIncident
plane
wave

(negative)

Fig. 1. (Color online) Schematic showing the axes and angles
used in the text. The angle of attack, α, and the angle at which
the excess force acts, ϕf , are measured counterclockwise from
the positive x-axis.
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with six different refractive indices, and radii varying
in the range from 0.1 to 5 μm are shown in Fig. 3. For
radii less than about one quarter of a wavelength, αeqm
changes very rapidly, falling from about 20° to −15°.
Thereafter, the behavior is strongly dependent on n. For
low indices (corresponding to, say, silica glass in water),
αeqm remains fairly steady as a is increased. However, for

higher n (e.g., silica in air), αeqm declines with increasing
radius until the flat surface of the light foil is almost
parallel to the direction of propagation.

The lift angle, ϕf , shows a more pronounced effect
[Fig. 3(b)]. Once more, the variation is relatively indepen-
dent of n in the low radius regime and the subsequent
changes in angle for low index semicylinders are rela-
tively minor. However, for higher index materials, the lift
angle oscillates dramatically. These oscillations occur
with two distinct periods and derive from geometric re-
sonances of the structure. The more rapid oscillations
correspond to half integer wavelengths across the diam-
eter of the lightfoil; i.e., they resemble the oscillations in
the reflectivity of a dielectric lamina with increasing
thickness. The slower oscillation is more difficult to un-
derstand: it appears to relate to integer numbers of
wavelengths over the radius (in that these coarser oscil-
lations have a period of about four times that of the
finer ones).

Figure 3(c) shows the modulus of the force acting at
mechanical equilibrium as a ratio of the radius a. Apart
from the rapid oscillations mentioned above, these
curves, once more, approximately converge for larger re-
fractive indices. Finally, Fig. 3(d) shows the torsional
stiffness, Kr

z � −dtz ∕dθz, as a ratio of the cube of the ra-
dius. It is more difficult to ascribe an appropriate power
law to this quantity. Kr

z initially increases much faster
than a3 before appearing to flatten out at larger radii. De-
spite the complex resonant behavior for higher refractive
index lightfoils, favorable sets of parameters exist. For
example, when the radius is exactly one or two wave-
lengths in the material, lift angles are high as are the force
magnitudes.

In order to provide a clearer understanding of the para-
meter space, similar equilibrium searches are performed
for a range of refractive indices and radii. Figure 4(a)
shows the variation in αeqm. As observed above, αeqm var-
ies rapidly for narrow cylinders of all refractive indices.
For larger radii, it is relatively steady and, across much of
the parameter space, it has a value of αeqm ≈ −15°. The lift
angle ϕf [Fig. 4(b)] is more susceptible to size effects. For
lower refractive indices, which could correspond, for ex-
ample, to polystyrene in water, lift angles do not oscillate
too wildly with size and ϕf ≈ 35–40°. For higher refractive
indices, ϕf is more erratic. Although obviously propitious
sets of parameters are evident, care must be taken to
avoid structures with low or negligible lift. For this rea-
son, design of optimal wavelength-scale lightfoils re-
quires control of dimensions to tolerances of fractions
of a wavelength. The modulus of the force at equilibrium
is shown in Fig. 4(c) as a ratio to the radius. As with each
of the other quantities discussed, it shows oscillatory
behavior, associated with geometric resonances, but is
otherwise invariant over much of the parameter space.
Finally, the scaled torsional stiffness, Kr

z ∕La3, is shown
in Fig. 4(d), confirming the approximate scaling law,
Kr

z ∝ a3L; for lightfoils with radii larger than about
two wavelengths. The moment of inertia of the lightfoil,
about its long axis, increases as a4L. Hence, in a vacuum,
an angular perturbation from equilibrium will result
in oscillations of frequency∝ 1 ∕

���

a
p

. Conversely, in a vis-
cous fluid, the hydrodynamic resistance varies as ∼a2L

Fig. 2. (Color online) Forces and torques experienced by light-
foils with n � 1.3, L � 1 μm; and various radii, a. (a) Scaled ax-
ial torque, tz ∕La2 (pN ∕μm2), (b) scattering force, f x ∕La; and
(c) lift force, f y ∕La (pN ∕μm2).

Fig. 3. (Color online) Stable equilibrium conditions for light-
foils of length 1 μm, with six distinct refractive indices, and
0.1 < a < 5 μm. (a) Angle of attack, αeqm, (b) lift angle ϕf ,
(c) scaled force modulus, jf j ∕La (pN ∕μm2), and (d) scaled
torsional stiffness, Kr

z ∕La3 (pN ∕ deg :μm3).
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[11], and the lightfoil relaxes back to equilibrium with a
time constant that is proportional to a. These remarks
are purely qualitative; a more rigorous treatment of the
stability and motion of lightfoils will form the basis of a
future publication.
To illustrate that these structures are indeed capable of

flight, we consider two examples. The first is a lightfoil
with a radius of 3.75 μm and length 100 μm, made from a
material with a refractive index of 1.6 and a density of
1.5 gcm−3, immersed in water (refractive index 1.333).
Its weight in water is then ≈20 pN. The size of the optical
lift force that it experiences is that of a 1.33 × 3.75 �
5.0 μm radius rod of refractive index 1.6 ∕1.333 � 1.2

in vacuum, multiplied by 1.333; i.e., the lift force is
≈240 pN in a 1 mW ∕μm2 plane wave. A plane wave with
power ≈0.1 mW ∕μm2 is required to lift this light foil in
water. A similar calculation for a silica lightfoil with
radius 1 μm in air indicates that in this case about
0.4 mW ∕μm2 is required.

In this Letter, we have shown that dielectric semicylin-
ders exposed to plane wave illumination have a stable
equilibrium orientation that is approximately indepen-
dent of size and refractive index. The stability arises
partly because of the lightfoil geometry, and partly be-
cause translational motion under plane wave illumina-
tion cannot induce a torque. The net lift force arises
due to asymmetric deviation of the momentum of the in-
cident light as it passes through the lightfoil. We predict
the lift force experienced in the present configuration is
great enough to overcome gravity for irradiance values
∼10 kW ∕cm2, in agreement with experiments [1]. Final-
ly, the lift force and stable orientation are subject to geo-
metric resonances for larger values of refractive index,
which correlate with the incident wavelength.

We are grateful to Alexandra Artusio-Glimpse, Roche-
ster Institute of Technology, for discussions on experimen-
tal aspects of optical lift. G. Swartzlander acknowledges
support from the NASA Innovative Advanced Concepts
Office (NIAC), Grant No. NNX11AR40G.
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An optical wing is a cambered rod that experiences a force and torque owing to the reflection and transmission
of light from the surface. Here we address how such a wing may be designed to maintain an efficient thrust
from radiation pressure while also providing a torque that returns the wing to a source facing orientation.
The torsional stiffness of two different wing cross-sections is determined from numerical ray-tracing analyses.
These results demonstrate the potential to construct a passive sun-tracking, space flight system or a micro-
scale surface measurement device based on radiation pressure and torque. c© 2013 Optical Society of America

OCIS codes: 350.4855, 350.6090, 350.3950.

The ability of light to push an object, first described by
Maxwell, is simple to describe in closed form for a flat
reflecting or absorbing surface. An arbitrarily shaped ob-
ject, however, often requires computer modeling to de-
termine the forces and torques created by radiation pres-
sure. Optical torque may arise owing to an offset of the
center of mass and center of radiation pressure (RP).
Many research opportunities and potential applications
are afforded by considering different shapes and optical
properties of the body, as well as different irradiance dis-
tributions. The effects of RP are particularly significant
in low gravity environments such as outer space or neu-
trally buoyant liquids.

The remarkable history of early uses of radiation pres-
sure in outer space includes the 1974 rescue of the
Mariner 10 mission to Venus and Mercury. Various in-
ternational space agencies are currently testing and pur-
suing the development of solar sailcrafts [1]. New modal-
ities to control the force and torque on sailcrafts are be-
ing sought for attitude and navigation purposes [2]. Cur-
rent means to affect the sailcraft attitude, and thus the
thrust vector, include the use of ballast masses [3], tip
vanes [4,5], and actively controlled liquid crystal scatter-
ers [6]. Bench-top RP experiments powered by focused
laser beams, rather than uniform sunlight, proliferated
after Ashkin’s development of optical tweezers [7]. Con-
trol over additional degrees of freedom was afforded by
use of spatial light modulators [8]. Bessel beams have
recently been shown to provide opportunities to either
attract or repel a particle from the source of light [9–11].
Molding the shape of the particle, rather than the light
field, has opened other recent avenues of exploration. Ex-
amples of this approach include optically driven micro-
gears and rotors [12–14], and optical wings [15,16].

This Letter describes an enabling radiation pressure
component that accomplishes a fundamental task that
has no analog for a flat reflecting surface. We predict
that an optical wing having a reflective coating over part
of the surface will experience a restoring torque that re-
turns the element to a sun facing (or light-source facing)

orientation. Single elements may be used as microscopic
mechanical oscillators, and arrays may be used for atti-
tude control of a sailcraft. For example, we envision the
placement of such arrays on a station keeping sailcraft
to achieve a passive sun-facing attitude control within
the halo orbit of a sub-Lagrange point [17]. In addition
to sails, the tunable rotation periods of the presented
optical wings may be useful to the microbiology field for
surface tension measurements, material transport, and
other applications.

Optical wings are cambered objects that experience
both a lift force and a torque due to reflection and re-
fraction of quasi uniform illumination at the wing sur-
face. The lift force and torque on purely refractive cam-
bered objects have previously been discussed in [15, 16].
We have since discovered that inclusion of a mirrored
back surface gives the wings special properties, namely
a restoring torque that fixes the wing to oscillate about
normal incidence with the refractive side facing the
source. Two optical wing oscillator designs are analyzed
below: the semi-cylinder and the trapezoidal rod both of
length L >> 2R,B, Fig. 1.

Fig. 1: Diagram of two wing oscillators with equal
mass having reflective back surfaces. (a) Semi-cylinder:
R = 0.5 units. (b) Trapezoidal rod: T = 0.21, H =
0.30, and B = 1.0 units.

The optical lift force is transverse to both the direc-
tion of propagating light and the scatter force. This force
arises from the shape and orientation of the optical wing,
which differs from the gradient force that arises from
highly focused Gaussian beams [7]. The total force on a
wing consists of both lift and scatter components, and
may be described as originating at the center of optical
pressure (CP). The force on an object from light of inten-
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sity I is given by F = QIAs/c, where As is the source-
facing area equal to 2RL or BL for the semi-cylinder or
trapezoidal rod, respectively, c is the speed of light, and
Q is the effective fraction of light reflected. A perfect mir-
ror at normal incidence has a value Q = 2. This value
changes as a function of angle of attack, α. The total
force may be described in terms of lifting and scattering
such that Q =

√
Q2
x +Q2

z, where Qx and Qz are the
lifting and scattering components with maximum values
of 1 and 2, respectively.

Fig. 2: Free body diagram of semi-cylindrical wing of in-
finite length, where r is the vector offset from the center
of mass (CM) to the center of pressure (CP) such that
the torque due to total force F is T = r0 × F.

Optical torque about an object center of mass (CM)
due to a small force dF on a surface element is given
by dT = r × dF, where r is a vector from the center
of mass to the surface point. The net torque may be
expressed T =

∮
(r × dF) = r0 × F where F is the net

force and r0 defines the CP-CM offset, Fig. 2. A Q-factor
may be defined for the optical torque T = R(IAs/c)Qt,
where Qt = Q(r0/R) and R is one-half the object sun-
facing width, i.e., equal to R or B/2 for the respective
objects in Fig. 1. The values of Q(α), ie. force and torque
efficiencies, must be determined numerically.

In our ray-tracing model, a large number of rays are
refracted and reflected by an input object until the in-
tensity of the internal rays become negligible. The mo-
mentum transfer from each ray is summed to obtain
the total force on the wing. We find that both wing
designs in question have zero lift force and torque at
normal incidence (α = 0◦), yet stably oscillate when ini-
tially positioned at an angle of attack. We also find that
Qz(α = 0) ≈ 2 for the trapezoidal wing (∼ 0.25 for the
semi-cylinder).

To visualize the free flight trajectories of these optical
wings, phase diagrams in Fig. 3 plot the angular velocity
of each wing as a function of angle of attack for n =
1.5. Each contour line is a path of constant energy in
the (α, ω) plane. The contours are separated by 10[Jω2

0 ]
unit-less energy units, where J is the moment of inertia
of the wing and ω0 =

√
IL/cm, where m is the mass

of the wing. From the phase diagram, we notice that
near α = 0◦ there are stable orbits highlighted in black.
With too much initial angular velocity, the wings go into
a tumble. Rotated to too great an angle of attack, the
wings no longer follow a stable orbit about α = 0◦.

To either side of normal incidence, the wing may be
oriented into a rotationally unstable angle of attack.
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Fig. 3: Phase diagram at n = 1.5 for (a) semi-cylinder
and (b) trapezoidal rod. Contours separated by 10[Jω2

0 ].

These angles define the maximum rotation that can be
applied to the wing for oscillation to occur. At a relative
refractive index of 1.5, the trapezoidal rod has a much
narrower stable region from ±17◦ than does the semi-
cylinder, ranging from ±51◦. As an approximation, we
can portray these optical wings as simple harmonic os-
cillators within the stable regions to obtain a rotational
stiffness kα, where T ≈ −kαα.

The oscillation period due to optical torque on a wing
is related to the rotational stiffness by P = 2π

√
J/kα,

where kα scales with the power of light across the wing
(IAs) and R. A semi-cylindrical wing made of OIR 620
photoresist (n = 1.6, R = 0.8 µm, L = 10 µm, and
m = 12 pg) oscillates with a damp-free period of 1.2 ms
when exposed to 10 µW/µm2 of light. If this same semi-
cylinder were placed in earth gravity (g = 9.8 m/s) on a
flat surface curved-side down, it would rock with a damp-
free period of approximately 3.4 ms due to an offset of
the wing center of mass to the position of the normal
force when the wing is rotated by a small angle. This
gravitational period of oscillation of the semi-cylinder is
given by P = 3π

√
Rπ/2g.

Let us now explore rotational stiffness as a function
of refractive index, n, of the two wings. This is impor-
tant for broadband illumination (e.g. solar). The values
for rotational stiffness are given relative to the stiff-
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ness of a mirror rotating about one edge such that
Qt = −2| sin(α)| sin(α) ≈ −0.2α, for small α.
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Fig. 4: Relative rotational stiffness against refractive in-
dex. Trapezoid curve is straight between 1.45 and 1.65,
and semi-cylinder curve is straight between 1.5 and 1.7.

Both wing shapes increase in stiffness with refractive
index, as shown in Fig. 4. They also both have a straight-
line portion in the curve where the growth is linear. The
trapezoidal rod is stiffer than the semi-cylinder for all
indexes of refraction. In applications using broadband
illumination, small change in stiffness with refractive in-
dex may be desirable. With a straight-line slope of only
0.77 as apposed to 2.55, the stiffness of the trapezoid
changes more slowly than does the semi-cylinder. There
is also a cut-off refractive index below which the wings
become rotationally unstable. The cut-off index for the
semi-cylinder is 1.37 and for the trapezoid is 1.41. These
unstable indexes are undesirable for oscillators.

There may be applications of optical wing oscillators
making use of the curved surface of the semi-cylinder.
For example, a semi-cylinder placed curved side down on
a microscope slide would rock from side to side on the
slide when exposed to light. Any losses to the period of
the rocking would be an indication of the surface tension
between the wing and the slide.

To scale-up optical torque, many wings may be joined
together to form a wing array with a total torque Tt =
NT, where N is the number of wings in the array. Addi-
tional torques that arise from the shifting of wings from
the pivot point of a larger object like a solar sail may
be avoided by insuring a balance of wings to either side
of the pivot point. As such, only the optical torque from
the wings Tt would be applied to the large craft. For ex-
ample, given two arrays of 1000 millimeter-scale, semi-
cylindrical wings placed equidistant from the center of
a 67x67m solar sail made of CP1 [18], the sail would
passively follow an orbit with a period of 3 years when
uniformly exposed to 1500 W/m2 intensity of light.

Through the example of two optical wing designs, we
have numerically shown that optical wing oscillators are
orbitally stable. The trapezoidal rod presented meets
many beneficial design parameters such as high scatte-

ring force for forward thrust, large rotational stiffness,
low change in stiffness with respect to refractive index,
and rotational stability near normal incidence for a range
of glass refractive indexes. However, the trapezoidal rod
has a small angular region where stable oscillation is pos-
sible. On the other hand, the semi-cylinder is stable over
a large range of angles and its curved surface provides
other opportunities for rotation-based applications. Op-
tical wing oscillators with large rotational stiffness are
expected to be robust to perturbations and may be used
to passively maintain periodic orbits of solar sails or used
in micro-scale investigations.
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