ADUM: Advanced Diagnostic Ultrasound in Microgravity

Smridhi, 12th grade
Health Careers High School, San Antonio, Texas
Object of the Mission

- The Advanced Diagnostic Ultrasound in Microgravity (ADUM) mission was designed to:
 - Test the accuracy of diagnosis of on-orbit injuries via ultrasound imaging.
 - Assess the feasibility of ultrasound to monitor in-flight bone alterations.
Description

- Investigation includes:
 - Feasibility of monitoring bone density during long-duration flights
 - Determining health problems in eyes, bones, sinuses, and abdominal injuries
- Nonmedical crew members
 - Given instructional CD ROMS to train themselves
 - Intent is to establish an instructive, simple method to teach medically-untrained professionals to successfully use an ultrasound machine
Principle Investigator

- Scott A. Dulchavsky, M.D., Ph.D., Henry Ford Health System, Detroit, MI

Co-Investigators:
- Ashot Sargsyan, M.D., Wyle, Houston, TX
- Douglas R. Hamilton, M.D., Ph.D., Wyle, Houston, TX
- Shannon Melton, Wyle, Houston, TX
ISS Missions

- Previous Missions
 - ADUM is the first experiment to specifically test the effects of microgravity on ultrasound
 - However, ultrasound equipment was used during Increment 5

- Expeditions Flown: 8 – 12

- Expedition Duration: October 2003 – April 2006
What is Ultrasound?

- Ultrasound imaging, AKA sonography
- Uses high frequency sound waves to produce real-time structure and movement of the internal organs
- Non-invasive imaging test that enables physicians to diagnose and treat medical conditions

Ultrasound image of the gallbladder

Ultrasound image of the liver
Significant Importance

- Ultrasound is the only imaging device currently available on the ISS
 - Exploration crews need diagnostic accuracy for evaluation of 250 medical conditions
- Crews working beyond Low Earth Orbit need telemedicine strategies for potential space illnesses
Significant Importance

- In addition, this experiment tests the ability of non-medically trained crew members
- Examinations were performed with little to no guidance from trained professionals in mission control
Earth Applications

- Using a relatively small diagnostic machine (without the help of a health care worker)
 - Saves lives and reduces healthcare costs

- Long distance communication with doctors
 - Largely efficient way of worldwide medical diagnosis

- Potentially grants universal access to clinical imaging experts
Space Applications

- Minimizes onboard resources while efficiently diagnosing medical problems

- Ability of astronauts to use ultrasound with scarce instruction
 - Encourages thorough treatment and prevents avoidable evacuation

- Enhancing the technology for telecommunication
 - Necessary for long-term and long-duration exploration
Requirements

- Two crewmembers must participate in a scan
 - One serves as the “patient”
 - The other operates the Human Research Facility (HRF) ultrasound machine

- The “patient” must be restrained using the Medical Operations Crew Medical Restraint System
 - Mandatory for all scans, excluding the bone scan

- Required audio/video links must be in private mode for crewmember privacy
Procedures

1. Set up the ultrasound system
 - Consists of HRF laptop and ultrasound keyboard, monitor, and probes

2. Scan lasts between 20 and 50 minutes
 - Performs four scan sets:
 1. Cardiothoracic (heart/lungs)
 2. Abdominal (i.e. liver, spleen)
 3. Dental (mouth)
 4. Bone scan (bones)

3. Shut down machine and store supplies

Total time required: 2 hours
Results

- The ADUM experiment shows that minimal training and the guidance of a certified sonographer produces quality diagnostic images.
- Results of the analysis of the crewmembers’ pictures/videos by the NASA TeleScience Center are outstanding.
- Ultrasound on the ISS requires an onboard proficiency enhancement program, visual cue cards, and guidance from trained radiological personnel on Earth.
Extended Results

- Expedition 8
 - Proved the capability of minimally trained personnel to operate an ultrasound machine
 - Groundwork for using ultrasound as a diagnostic tool in space

- Expedition 9
 - Ultrasound images of the shoulder showed the enhanced quality of this type of imaging
Extended Results

- Expedition 10
 - Examined the eye through a closed eyelid
 - Can signify more dangerous head trauma

- ADUM Results
 - Establish ultrasound as an important device for diagnosis (i.e. on future vehicles, the Moon, Mars)
Future Application

• Success of ADUM
 • May lead to the use of ultrasound for patients in isolated areas, natural disaster sites, and the military

• With guidance from an expert (potentially hundreds of miles away), a person with minimal training could perform an ultrasound
 • Has the potential to expand the available tools for the medical community
 • Provides the ability to triage with a massive amount of patients
Works Cited

- http://www.shuttlepresskit.com/images/iss/iss_top.jpg
- http://microgravity.grc.nasa.gov/MSD/MSD_gifs/menu_gifs/page_menus/tsc_menus/tscwideshot.jpg