Enhancing Navigation through NASA Initiatives

Badri Younes
Deputy Associate Administrator

Space Communications & Navigation (SCaN)

Human Exploration & Operations Mission Directorate (HEOMD)

International Association for Institutes of Navigation
IAIN Congress 2012

Seamless Navigation: Challenges and Opportunities

1-3 October 2012
Cairo, Egypt
SCaN Functions

- Delineated in memorandum from NASA Associate Administrator (September 24, 2007).
- SCaN serves as the Program Office for all of the Agency’s space communications and navigation activities.
- SCaN manages and directs:
 - The ground-based facilities and user services provided by the Near Earth Network (Ground Network) and Deep Space Network;
 - The ground- and space-based facilities and user services provided by the geosynchronous Space Network and by a future Lunar Network and Mars Network.
- Activities include those that:
 - Integrate all existing NASA SCaN assets and build a single NASA-wide space communications and navigation architecture;
 - Represent NASA before associated national and international programs of spectrum management and space data systems standardization;
 - Represent and negotiate on behalf of NASA on all matters related to Space Telecommunications and navigation in coordination with the appropriate offices and flight mission directorates.
SCaN Key Driving Requirements

1. SCaN shall develop a **unified** space communications and navigation network infrastructure capable of meeting **both robotic and human** exploration mission needs.

2. SCaN shall implement a **networked** communication and navigation infrastructure across space.

3. SCaN infrastructure shall provide the **highest data rates feasible** for both robotic and human exploration missions.

4. SCaN shall assure data communication protocols for Space Exploration missions are **internationally interoperable**.

5. SCaN shall **provide** the end space communication and navigation infrastructure for **Lunar and Mars surfaces**.

6. SCaN shall provide **anytime/anywhere** communication and navigation services **as needed** for Lunar and Mars human missions.

7. SCaN shall continue to **meet its commitments** to provide space communications and navigation services to existing and planned missions.
The current NASA space communications architecture embraces three operational networks that collectively provide communications services to supported missions using space-based and ground-based assets.

Deep Space Network – ground stations spaced around the world providing continuous coverage of satellites from Earth Orbit (GEO) to the edge of our solar system

Near Earth Network – NASA, commercial, and partner ground stations and integration systems providing space communications and tracking services to orbital and suborbital missions

Space Network – constellation of geosynchronous relays (TDRSS) and associated ground systems
SCaN Network

- Manned Missions
- Sub-Orbital Missions
- Earth Science Missions
- Space Science Missions
- Lunar Missions
- Solar System Exploration

- USN Alaska
- Gilmore Creek Tracking Station
- Wallops Ground Station
- Kongsberg Satellite Services
- Swedish Space Corporation
- German Space Corporation

- Alaska Satellite Facility
- Goldstone Complex
- White Sands Complex
- White Sands Ground Terminal
- USN

- USN Chile
- Madrid Complex
- Trollsat Kongsberg Satellite Services
- Satellite Applications Center

- Guam Remote Ground Terminal
- Canberra Complex
- USN Australia
- McMURdO Ground Station

- Sub-Orbital Missions
- Solar System Exploration

- Daneil Space Mission
- Earth Science Missions
- Lunar Missions

- Swedish Space Corporation
- Kongsberg Satellite Services
- Satellite Applications Center

- Guam Remote Ground Terminal
- Canberra Complex
- USN Australia
- McMURdO Ground Station

- Sub-Orbital Missions
- Solar System Exploration

- Swedish Space Corporation
- Kongsberg Satellite Services
- Satellite Applications Center

- Guam Remote Ground Terminal
- Canberra Complex
- USN Australia
- McMURdO Ground Station

- Sub-Orbital Missions
- Solar System Exploration

- Swedish Space Corporation
- Kongsberg Satellite Services
- Satellite Applications Center

- Guam Remote Ground Terminal
- Canberra Complex
- USN Australia
- McMURdO Ground Station
SCaN Infrastructure Enables Mission Communications and Navigation

Space Users

Mission Control (Users)

Relay Satellite Ground Station

Deep Space Network

Flight Dynamics
(where the orbit is calculated)

Space Network

Two-Way Communications

Ground Tracking Station

One-Way Radiometric Navigation Signals

Global Positioning System (GPS)

NASA’s Global Differential GPS System
(tracks GPS signals & augments its precision)

On Board Measurements:
- Inertial Navigation System
- GPS Receivers
- Space Clocks
- Optical Navigation
- X-Ray Navigation

SCaN Infrastructure Enables Mission Communications and Navigation
SCaN’s Role in Navigation

Defining the ‘N’ in SCaN:

In support of mission-defined requirements, SCaN provides navigation information; as well as policy, systems engineering, architecture development, and technology development; enabling three categories of services:

- **Communications** (enable user nav information to be forwarded/returned to & from space)
- **Metric Data Delivery** (e.g. measurements of spacecraft signals)
- **Reference Data Delivery** (including absolute time and geometric reference frames)

Objectives:

- Increase on-board autonomy, navigation precision, redundancy, and safety
- Optimize the use of the SCaN networks by reducing the communication/tracking burdens

Cross-cutting enablers:

- Technology Development (GPS receivers, optical comm/nav)
- Models (Geodetic Reference Frames/Satellite Laser Ranging, Space Weather, etc.)
- Flight Dynamics
The 2004 U.S. Space-Based Positioning, Navigation, and Timing (PNT) Policy tasks the NASA Administrator, in coordination with the Secretary of Commerce, to develop and provide requirements for the use of GPS and its augmentations to support civil space systems.

The 2010 National Space Policy reaffirms PNT Policy commitments to GPS service provisions, international cooperation, and interference mitigation.

NASA is engaging with other space agencies at venues such as the International Committee for GNSS (ICG) and the Interagency Operations Advisory Group (IOAG) to seek similar benefits from other PNT constellations to maximize performance, robustness, and interoperability for all.
GPS Extends the Reach of NASA Networks to Enable New Space Ops, Science, and Exploration Apps

GPS services enable:

- **Real-time On-Board Autonomous Navigation:** Allows NASA to maximize the “autonomy” of spacecraft and reduces the burden and costs of network operations. It also enables new methods of spaceflight such as precision formation flying and station-keeping.

- **Attitude Determination:** Use of GPS enables some missions to meet their attitude determination requirements, such as ISS.

- **Earth Sciences:** GPS used as a remote sensing tool supports atmospheric and ionospheric sciences, geodesy, and geodynamics -- from monitoring sea level heights and climate change to understanding the gravity field.

GPS Relative Navigation used for Rendezvous to ISS

- ESA ATV 1st mission to ISS in 2008
- JAXA's HTV 1st mission to ISS in 2009
Growing GPS Uses in Space: Space Operations & Science

- Projections show that over the next 20 years:
 - Approximately 60% of space missions will operate in LEO (< 3,000 km)
 - Approximately 35% of space missions will operate at higher altitudes up to GSO (36,000 km).

20-Year Worldwide Space Mission Projections by Orbit Type

- Low Earth Orbit: 59%
- Medium Earth Orbit: 27%
- GeoSynchronous Orbit: 8%
- Highly Elliptical Orbit: 5%
- Cislunar / Interplanetary: 1%

Orbital Transfers:
- LEO-to-GEO, cislunar transfer orbit (figure), transplanetary injection, etc.

Highly Elliptical Orbits*:
- Examples: NASA MMS 4-satellite constellation, communication satellites, etc.

(*) Apogee above GEO/GSO

Low Earth Orbit:
- Earth Observation, LEO communication constellations, etc.

Medium Earth Orbit:
- GNSS Constellations

GeoSynchronous:
- Communication Satellites, Regional Navigation Satellite Systems
• **Terrestrial Service Volume (TSV)**
 – The volume of space between the surface, and an altitude of 3,000 km (which includes much of LEO) is referred to as the Terrestrial Service Volume, or TSV.

• **Space Service Volume (SSV)**
 – Space user community was vulnerable to design changes because requirements were not explicitly stated.
 – The volume of space between 3,000 km altitude and geosynchronous altitude (36,000 km) was defined as the Space Service Volume in GPS technical documents.
 – Performance requirements for the GPS SSV were then developed to include satellite antenna patterns (side lobes) and group/phase delay variations.
 – SSV therefore reflects a guaranteed level of performance within a service volume or sphere expanding out from the TSV to GEO.

The volume of space where GPS provides PNT services is referred to as a Service Volume

“To scale” visualization of the terrestrial and space service volumes defined to specify space use of GPS.
When operating at higher orbits we are tracking the GPS signals broadcast “over the limb” of the Earth.

This is sometimes referred to as ‘above the GPS constellation’ navigation.

Earth is blocking most of the GPS signals, so the availability is much smaller.

This is why the GPS transmitter ‘side lobes’ become vital to space users.
Goddard Space Flight Center (GSFC)

- **Navigator GPS Receiver: GPS L1 C/A**
 - Flew on Hubble Space Telescope SM4 (May 2009), planned for MMS, GOES, GPM (Honeywell commercial)
 - Onboard Kalman filter for orbit/trajectory estimation, fast acquisition, RAD hard, unaided acquisition at 25 dB-Hz

- **Possible Future Capabilities**
 - High-sensitivity Signal Acquisition and Tracking:
 - Acquisition thresholds down to 10-12 dB-Hz
 - Applicable to HEO, lunar, and cislunar orbits
 - Reception of New GPS Signals: L2C and L5
 - GPS-derived Ranging Crosslink Communications
 - Developed for MMS Interspacecraft Ranging and Alarm System (IRAS) to support formation flying
 - Features S-band communications link with code phase ranging, used in formation flying

Jet Propulsion Laboratory (JPL)

- **BlackJack Flight GPS Receiver: GPS L1 C/A, P(Y) and L2 P(Y)**
 - Precise orbit determination (JASON, ICESat, SRTM missions)
 - Occultation science (CHAMP, SAC-C, FedSat, 2 GRACE, 6 COSMIC)
 - Gravity field (CHAMP, GRACE)
 - Surface reflections (SAC-C, CHAMP)
 - 18 BlackJack receivers launched to-date

- **IGOR GPS receiver: Commercial version from Broad Reach Engineering**
- **CoNNeCT Software Defined Radio: GPS L1 C/A, L2C, L5**
- **TriG GNSS Receiver under development: GPS L1, L2, L5, Galileo E1, E5a, GLONASS (CDMA and FDMA)**
 - Features: open-loop tracking, steered array
 - 2-16 antennas, RAD hard parts
 - Engineering models: 2011, production: 2013
Objective
Develop an advanced prototype mercury-ion (Hg) atomic clock and demonstrate for a year in space, providing the unprecedented accuracy (Allan Deviation < 2.0E-14 at one day) needed for the next generation of deep space navigation and radio science. Identify steps needed to build 5 kg/20 W infusible flight version.

Demonstration Architecture

Technology highlights
• State selection via UV optical pumping using Hg ions
• Extreme accuracy and stability via:
 – No buffer gases
 – No wall collisions
 – High Q microwave line from Hg
• Multi-pole trap yields insensitivity to disturbances

Key Features for reliable in-space use
• No lasers, cryogenics, or other consumables → long life
• Existing vacuum technology and no microwave cavities → easier manufacturability
• Radiation tolerant at levels similar to GPS Rb Clocks
Benefits of the Deep Space Atomic Clock

For NASA Deep Space Missions
Enable a shift to a more flexible/extensible 1-Way radio navigation architecture from the current 2-Way model
- For Example: Enables multiple spacecraft per aperture tracking at planets such as Mars or the Moon
- For Example: Europa Flyby Gravity Science can use any Ka-band receiver on Earth
Enable autonomous radio navigation
- For Example: Enables MSL-class doing pinpoint EDL (<100m) can save ~100kg of propellant
- For Example: Enables fully autonomous aerobraking operations
Increase navigation & radio science tracking data accuracy by 10 times and quantity by 2 times
- For Example: Mars Orbit Determination improves by a factor of 5
- For Example: Europa Flyby gravity science is collected in fewer flybys making the mission more robust

For GPS III
Performance of 1st-generation Hg ion trap clocks exceed current Rb clocks by a factor of 100
- Can reduce the number of uploads by the Control Segment SV clock correction parameter updates.
- Improves operational effectiveness in a long-term autonomous operational scenarios.
Laser Ranging to GNSS enables:

- Comparison of collocated radiometric and optical measurements used for model improvements

- Isolation of systematic errors in GNSS constellations and improves the reference frame accuracy
 - Variation of range and phase centers important for space users because they sample the signals far off the transmit boresight

- Improved models and reference frames necessary to support civilian and scientific requirements for higher PNT accuracy
 - Global sea height change measurement from space requires 1 mm/year precision, so reference frame needs to be constant to 0.1 mm/yr
To ensure interoperability, ILRS recommends that:

- Retroreflector payloads on future GNSS satellites should have an “effective cross-section” of 100 million sq. meters (5 times that of GPS-35 and -36) for GNSS satellite.
- The parameters necessary for the precise definition of the vectors between the effective reflection plane, the radiometric antenna phase center and the center of mass of the spacecraft be specified and maintained with an accuracy of a mm.
- Retroreflector payloads for satellites such as Galileo in higher orbits should scale the “effective cross-section” to compensate for the R^4 reduction in signal strength.

Recommended Standards for Laser Retro-reflectors Design

- **GPS 35/36 (US Air Force)**
- **ETS-8 (JAXA)**

Required reflector cross section may be met by either:

1. Coated hollow cubes, in an array of 590 sq. cm compared to present 464 sq cm on GPS-35 and -36;
2. ETS-8 (JAXA) style array with uncoated cubes.
Search and Rescue from Space with GPS: Distress Alerting Satellite System (DASS)

SARSAT Mission Need:

- More than 800,000 emergency beacons in use worldwide by the civil community – most mandated by regulatory bodies
- Expect to have more than 100,000 emergency beacons in use by U.S. military services
- Since the first launch in 1982, current system has contributed to saving over 40,000 lives worldwide

Status:

- SARSAT system to be discontinued as SAR payload implemented on Galileo
- NASA (with over $35M invested) and Air Force developed options for U.S. SAR system
- Successful NASA Proof-of-Concept DASS on GPS IIR(M) and IIF satellites
- Transition to GPS III transition underway
Enabling International Collaboration

• SCaN represents NASA at international fora related to space communications and navigation issues. These include:
 • Interoperability Plenary (IOP)
 • Interagency Operations Advisory Group (IOAG)
 • Space Frequency Coordination Group (SFCG)
 • Consultative Committee for Space Data Systems (CCSDS)
 • International Telecommunications Union (ITU)
 • International Committee on Global Navigation Satellite Systems (ICG)
 • Other Space Agencies
US agencies that contribute to the IGS include:

- National Aeronautics and Space Administration (NASA),
- National Geospatial-Intelligence Agency (NGA),
- National Oceanic and Atmospheric Administration (NOAA)
- National Geodetic Survey (NGS),
- Naval Research Laboratory (NRL),
- National Science Foundation (NSF),
- US Naval Observatory (USNO), and
- US Geological Survey (USGS),

... and numerous universities & research organizations.

Over 350 permanent tracking stations operated by more than 100 worldwide agencies comprise the IGS network. Currently the IGS supports two GNSS: GPS and the Russian GLONASS.

GPS Applications in IGS Projects & Working Groups
- IGS Reference Frame
- Supporting AREF - African Reference Frames
- Precise Time & Frequency Transfer
- GLONASS Pilot Service Project, now routine within IGS processes
- Low Earth Orbiters Project
- Ionosphere WG
- Atmosphere WG
- Sea Level - TIGA Project
- Real-Time Project
- Data Center WG
- GNSS WG

http://igscb.jpl.nasa.gov

NASA funds the coordinating center the IGS Central Bureau
Global Differential GPS System (GDGPS)

- Global, seamless, GPS augmentation system developed and operated by NASA's Jet Propulsion Laboratory
 - Supports real-time positioning, timing, and environmental monitoring for agency science missions. Provides advanced real-time performance monitoring
 - Provides timely products for GPS situational assessment, natural hazard monitoring, emergency geolocation, and other applications.
 - Operational since 2000, has more than 100 dual-frequency GPS reference stations

GDGPS real time network (100+ tracking sites)

- Operating since 2000 with 99.999% reliability

Terrestrial and airborne users

- GPS measurements
- Frame relay, internet
- Differential corrections
- Iridium, Inmarsat, GPRS, ...
- GDGPS Operations Center
- Differential corrections, ranging, integrity
- Uplink
- Land lines, internet
- TDRS
- TDRSS Augmentation Service for Satellites (TASS)
- Broadcast
- Space
- Users

Special Real-Time Services:
- Integrity monitoring,
- Performance monitoring,
- Situational assessment,
- Orbit and clock prediction,
- Real-time Iono maps,
- Space weather, ...
Augmenting GPS in Space with TASS

- **TDRSS Augmentation Service for Satellites (TASS)**
- **Supports all space users**
 - Communication channel tracking / ground-in-the-loop users
 - GNSS-based on-board autonomous navigation

1) User spacecraft acquires GNSS signals
2) A ground network monitors GNSS satellites
3) GEO Space Network satellites relay GNSS differential corrections to space users on an S-band signal (demo signal since 2006)
4) Evolved TASS signal incorporates additional parameters

- GNSS integrity Information
- Tracking Satellite Information (health, ephemerides, maneuvers)
- Space Weather Data
- Solar Flux Data
- Earth Orientation Parameters
- User-specific Command Fields
- Pseudorandom Noise (PRN) ranging code
• NASA and other space users increasingly rely on GPS/GNSS over an expanding range of orbital applications to serve Earth populations in countless ways

• The United States will continue to work towards maintaining GPS as the “gold standard” as other international PNT constellations come online

• NASA is proud to work with the United States Air Force to contribute making GPS services more accessible, interoperable, robust, and precise for all appropriate users

• GPS precision enables incredible science, which in turn allows NASA to use this science to improve GPS performance

“On Target with GPS Video”

www.youtube.com/watch?v=_zM79vSnD2M
Contact Information

Badri Younes
Deputy Associate Administrator
Space Communications and Navigation Program
Human Exploration and Operations Mission Directorate
National Aeronautics and Space Administration Headquarters

Badri.younes-1@nasa.gov
www.nasa.gov
Backup Slides
“Near Earth” PNT Development Activities Timeline 2012-2020
GNSS Mission Areas:
Precise Orbit Determination, Timing, Relative Nav for Rendezvous, Formation Flying, & Science Applications

<table>
<thead>
<tr>
<th>Mission</th>
<th>GNSS</th>
<th>Application</th>
<th>Orbit</th>
<th>Receiver</th>
<th>Signals</th>
<th>Launch</th>
</tr>
</thead>
<tbody>
<tr>
<td>LandSat</td>
<td>GPS</td>
<td>Orbit</td>
<td>LEO</td>
<td>GD Viceroy</td>
<td>L1</td>
<td>2012</td>
</tr>
<tr>
<td>COSMIC IIA</td>
<td>GPS, GLONASS, Galileo</td>
<td>Occultation</td>
<td>LEO</td>
<td>TriG</td>
<td>L1, L2, L5, Galileo, GLONASS</td>
<td>2013</td>
</tr>
<tr>
<td>Jason III</td>
<td>GPS, GLONASS, Galileo</td>
<td>Oceanography</td>
<td>LEO</td>
<td>BlackJack/IGOR+</td>
<td>L1, L2, L5, Galileo, GLONASS</td>
<td>2013</td>
</tr>
<tr>
<td>GPM</td>
<td>GPS</td>
<td>Orbit, time</td>
<td>GEO</td>
<td>Navigator</td>
<td>L1 C/A</td>
<td>2013</td>
</tr>
<tr>
<td>COSMIC IIB</td>
<td>GPS, GLONASS, Galileo</td>
<td>Occultation</td>
<td>LEO</td>
<td>TriG</td>
<td>L1, L2, L5, Galileo, GLONASS</td>
<td>2014</td>
</tr>
<tr>
<td>MMS</td>
<td>GPS</td>
<td>Rel. range, orbit, time</td>
<td>up to 30 Re</td>
<td>Navigator</td>
<td>L1 C/A</td>
<td>2014</td>
</tr>
<tr>
<td>CLARREO</td>
<td>GPS, GLONASS, Galileo</td>
<td>Occultation</td>
<td>LEO</td>
<td>TriG</td>
<td>L1, L2, L5, Galileo, GLONASS</td>
<td>2015</td>
</tr>
<tr>
<td>GOES-R</td>
<td>GPS</td>
<td>Orbit</td>
<td>GEO</td>
<td>Navigator</td>
<td>L1 C/A</td>
<td>2015</td>
</tr>
</tbody>
</table>
Defining the Space Service Volume Beyond LEO

- Due to GPS performance variations based on altitude and geometry, the overall GPS SSV is in turn subdivided into two separate service domains:
 - SSV for Medium Altitudes:
 - 3,000 to 8,000 km altitude
 - Visible GPS satellites can be present both above and below the user
 - SSV for GSO/HEO Altitudes:
 - 8,000 to 36,000 km altitude
 - Visible GPS satellites are predominantly below the user
SSV Meant to Overcome “Traditional” GPS Constraints in Space Environment

- GPS availability and signal strength for Positioning, Navigation, and Timing (PNT) services originally specified for users on or near the Earth’s surface
 - Primarily developed for land, air, and maritime users, however most LEO space users up to 3,000 km share similar operational benefits as more “traditional” Earth users

- Space users increasingly rely on GPS/GNSS for spacecraft navigation and science, however space remains a challenging operational environment at higher altitudes:
 - Rapidly changing geometry affects acquisition, tracking, time-tagging, navigation
 - Large dynamic ranges – “weak” and “strong” satellites with wide signal gain variability
 - High Doppler & Doppler Rates
 - Fewer satellite signals available
 - Mission antenna placement – visibility, multipath, radiation on very dynamic platforms

- To overcome these constraints, NASA has invested in:
 - Conducting flight experiments to characterize GPS signal performance beyond LEO
 - Developing new GPS/GNSS space-qualified receivers to support missions in geosynchronous orbit and highly elliptical orbits with apogees beyond GEO
The characteristics that differentiate the SSV for Medium Altitudes & SSV for GSO/HEO Altitudes are as follows,

Medium Altitudes (3,000 – 8,000 km)
- Four GPS signals available simultaneously a majority of the time
- Conventional space GPS receivers will have difficulty:
 - GPS signals over the limb of the Earth become increasingly important
 - Wide range of received GPS signal strength
 - One-meter orbit accuracies feasible

GSO/HEO Altitudes (8,000 – 36,000 km)
- Nearly all GPS signals received over the limb of the Earth
- Users will experience periods when no GPS satellites are available
- Received power levels will be weaker than those in TSV or Medium Altitudes SSV
- A properly designed receiver should be capable of accuracies ranging between 10 and 100 meters depending on receiver sensitivity and local oscillator stability
• Three parameters are used to determine the characteristics of GPS signals to support positioning, navigation, and timing (PNT) in the SSV

 – **Signal Availability**: the number of GPS/GNSS satellites in direct line-of-sight with the receiver at any given time

 – **Received Power**: the minimum power level required at the GPS/GNSS receiver at altitude

 – **Pseudorange Accuracy**: contribution of the GPS/GNSS system to the measurement of the distance between a GPS/GNSS satellite and a GPS/GNSS receiver