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Partnering To Engineer the Future

Exploration Spacecraft make little use of space resources

Solar illumination, vacuum, heat sink, solar winds

But same stuff is found in space as on Earth...
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Ice ... everywhere el
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State of Knowledge

Volatile and mineral resources available on asteroids, comets, moons and
planets in the solar system

Supplemental Mechanical Power for Exploration Systems
Volatile resources =» Mechanical power or propulsion to deep space missions?
Identify the right applications : resource, conditions, location, need.

Measure production of gas under conditions and energy input

Mitigation of Threat from Near-Earth Objects
Can volatile resources on comets and asteroids be used to deflect them?
When is it possible?
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Carbon Dioxide Ice conditions in space ESG
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@ Ice types and conditions fgﬁ%

in the solar system ——

Location Pressure (Torr) | Temperature (K)

Moon H20 1014 40 - 100
Mars H20, CO2 4.5 150
Comets H20, CO2 1014 40
Europa H20, CH4, CO2 10 100
Titan H20, CO2 1,140 150
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@ Applications of sublimation gas ESC

in planetary missions

Pneumatic Conveying of Regolith

Soils can be excavated and/or transferred to instrumentation or chemical reactors by gas-
driven conveying. 500 grams of CO, ice sublimated into gas at 10 psig would convey 5 Kg of
regolith in one minute under Martian conditions.

Attitude-control thruster (Mars)
a 3.6N thruster would require 71 Kg of CO, per minute.

Surface robots mechanical power

Removal of objects, trench digging, gas powered grappling gun, small aircraft assisted
launch, tumbleweed propulsion

Near Earth Asteroid deflection
Deflecting a C-type asteroid by providing a AV of 1m/s in one day requires ejecting

4x10°% of its mass at 3m/s during that time. This means 660 Kg of material must be
ejected per second for one day to deflect a 400m C-type asteroid.
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Exploration Robots Propulsion Eﬁﬂw

Partnering To Engineer the Future

Robotic hoppers acquiring ice from Martian surface to refuel attitude-control thrusters
using cold gas propulsion.
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Pneumatic transfer of regolith
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Enthalpy of sublimation of CO, under Mars conditions: 590 kJ/kg at 155K

Earth condition transfer (760 Torr): 5-10 psig of air // 100 g/s of regolith

Mars conditions (4.5 Torr): 1-3 psig estimated
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Concept for utilizing a comet’ s frozen resources to provide cold propulsion and
deflect it from a potential collision with Earth.
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VAsA . : : : Eﬁ@ -
N Asteroid & Comet Deflection by In Situ Propulsion

Sustained action over time may become a viable option when:
1. Political or societal pressures delay or eliminate the use of nuclear weapons
2. Disagreement among international partners on the use and availability of weapons

3. Concerns over the fate of the fragmented object.
4. Pre-positioning of propulsive deflectors is feasible ahead of decision times

Major challenges

Comets are active producers of gas through sublimation. Can we
reasonably impact them by using the same principle?

Unstable environment. Operation for months to a year.

Long mission reliability
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In Situ Propulsion for Asteroid & Comet Deflection ot e
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Ejected mass flow rate from a comet or asteroid to propel it on a deflected
orbit with a AV of 1m/s. Example assumes a gas/solid material velocity of 3 m/s,
and an object of 400 m in diameter with a density of 2 g/cm3
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Gas evolution at comets ESG |

Partnering To Engineer the Future
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At perihelion, 0.25 x 10%” molecules/s is ejected ~ 416 moles/s

If of water only, 416 moles/s ~ 7.5 kg/s.

W.F. Huebner et al. “Heat and Gas Diffusion in Comet Nuclei”, ISSI Report SR-004 (2006)
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Enthalpy of Sublimation of H,0 ESG«-

Partnering To Engineer the Future
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@ Comet deflection by water sublimation ES@_M,W,M.

1. Controlled Mass ejection by sublimation may be effective at several AU of

perihelion

2. Energy required is of the order of 2.7 MJ/kg of ice ... i.e. 3 MW power source !

Comet helps: Phase transition of amorphous ice
to crystallization is exothermic and triggers
sublimation of trapped gases (1.6 kdJ/mol)
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@ Comet deflection by Water sublimation ES@WW

1. Controlled Mass ejection by sublimation may be effective at several AU of

perihelion
2. Energy required is of the order of 2.7 MJ/kg of ice ... i.e. 3 MW power source !

Comet helps: Phase transition of amorphous ice
to crystallization is exothermic and triggers
sublimation of trapped gases (1.6 kdJ/mol)
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Concept: Trigger phase change by heat
piping and propel released gases
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Sublimation of silicates from asteroids at pressure 10~/ torrﬁ%“““‘“""‘”’“
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S u m m a ry Partnering To Engineer the Future

Water and Carbon Dioxide ice in our solar system can be sublimated at
low pressures.

Exploration Robot applications concepts analysis

Demonstrations of regolith transfer by CO, gas and pressurization of
extracted gas are underway.

NEO mitigation by in situ propulsion

. Multi-year mission with impact away from perihelion. Not for
short warning times.

. Thermal management concepts to lower energy inputs
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, Now used by NASA
to save the world from
Overweight Comets!
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