CE&R Initial Concept Overview

13 September 2004
CE&R Initial Forum
Washington, D.C.
Agenda

- Proposed Objectives
- Initial Lunar System-of-Systems Concept
- Driving Architecture Issues
Proposed Objectives

Recommended Level 0 Objectives

Science

1. Develop and Demonstrate Methods, Technologies, and Systems for Human Exploration of the Solar System
2. Determine the Extent of Exploitable Resources on the Moon; Assess and Demonstrate In Situ Resource Use
3. Develop Methods to Mitigate Impact of Long-Duration Human Exposure to the Space and Lunar Environments
4. Determine the Origin of the Moon and Impact History of the Inner Solar System

Econ

5. Stimulate the High-Tech Industry in the United States
6. Enable Commercial Lunar Activities by Developing and Transferring Lunar Knowledge and Capabilities to Private Sector

Security

7. Develop and Maintain Autonomous Proximity Operations, Docking, Support, and Assembly Capability
8. Develop and Maintain Space Asset Human Servicing Capability in Near-Earth Orbits
9. Improve and Sustain the Nation’s Technical Workforce by Inspiring Students to Pursue Mathematics, Sciences, and Engineering
Proposed Objectives

Recommended Level 1 Spiral Objectives

Bold Blue – Meets a Specific Time-Based NASA Requirement

- **Major Contributor**: ○
- **Contributor**: □

<table>
<thead>
<tr>
<th>Spiral</th>
<th>Recommended Level 0 Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Security</td>
</tr>
<tr>
<td>1</td>
<td>1 2 3</td>
</tr>
</tbody>
</table>

- **Spiral 1**
 - Robotically Collect Topography, Gravity, Radiation, and Mineralogy Data by 2008 to Support Site Selection
 - Demonstrate Crew Exploration Vehicle (CEV) Earth Entry, Descent, and Landing System (EDLS) by 2008
 - Robotically Collect and Return Lunar Surface Samples by 2010
 - Robotically Qualify a Human-Rated CEV and Crew Launch Vehicle for Rendezvous, Docking, and EDLS by 2011
 - Demonstrate Crewed CEV Habitability, Egress, EVA, and Crew Transfer by 2012
 - Robotically Demonstrate 180-Day CEV On-Orbit Endurance by 2013

- **Spiral 2**
 - Qualify Exploration Transfer Stage by 2015
 - Deploy Space Weather Monitor by 2016
 - Qualify End-to-End Crew Transportation System by 2017
 - Conduct a Crewed Day / Night Stay on the Lunar Surface by 2018

- **Spiral 3**
 - Demonstrate Surface Nuclear Power Operation by 2019
 - Demonstrate Base Surface Operations and Logistics by 2020
 - Prove 180-Day Crewed Endurance by 2021
 - Conduct Long Duration Traverse / Science Exploration by 2022
 - Demonstrate Critical Mars Surface Functionality by 2022

- **Spiral 4**
 - Development and First Flight of 100t Class Launch Vehicle (2024)
 - Crewed LEO Demonstration of Mars Elements: Endurance and Latencies (2024 to 2026)
 - Crewed Demonstration of Mars Landing and Return Elements at the Moon (2026)
 - First Crewed Mars Flight (2027)
Three Spiral Initial Concept Established

- Credible Baseline Established Based on Concept Studies and Initial Trades
- Primary FOMs considered: Cost Profile, Safety, Prob. of Mission Success
- Broad Trade Space Defined

Point-of-Departure Concept Features:

- Safe human transport using Earth-Moon Lagrange point (EML1) rendezvous, for flexible lunar access and earth return
- Deliver unmanned cargo and surface systems using efficient direct trajectory.
- Elements launched, assembled in LEO into translunar vehicles like Mars missions in later spirals.
- Minimized number of unique elements.
- Flight elements sized to balance launcher development affordability, reliability.
- 55t commercially procured Atlas or Delta derivative launchers for cargo.
- Lunar exploration features both fixed and mobile assets, potential Mars architectures
Early Trades Show Affordability of Intermediate Launchers

- 130t Launcher Unaffordable in Early Development, No Cost Benefit Over 55t Class
- Reliance on Existing LVs Unaffordable Post-2016 Due to Launch Rates
- 55t Class Cheaper Than Reliance on Current Vehicles
Spiral One

Spiral 1, 2005-2014
Human Activities in LEO

- LRO
- LLO
- Uncrewed CEV Qual/Demo Flights
- Crewed Flight With EVA
- Crew Transfer
- SPA-SR Sample Return
- Delta II Class
- Human-Rated CLV
- Human-Rated CLV
- Recovery

Ground
Spiral Two

Spiral 2, 2010-2020
Humans Return to the Moon

SWM
LRO
SEL1
LLO
ETS
ETS/SM/RM Loiter
EML1
LEO
EELV-55
Delta II Class
Cargo Transport (Three launches per Module)
Crew Transport (Four launches per Crewed Surface Trip; 3 x 55t, 1 x CLV)
Recovery

Surface Hab Module
Lander Module
Spare
Hab Module (Crewed)
Lander With Ascent Stage
Rover

30-Day Stay, Crew of Four

Uncrewed Demo, Followed by Crewed Flight
Four Crew
Human-Rated CLV

Spiral Three

Spiral 3, 2015-2025
Extended Lunar Exploration and Mars Preps

Acronyms:
- EML1: Earth-Moon Lagrange Point 1
- EML2: Earth-Moon Lagrange Point 2
- LLO: Low Lunar Orbit
- LRO: Lunar Reconnaissance Orbiter
- ETS: Exploration Transfer Stage
- RM: Return Module (CEV)
- SEL1: Sun-Moon Lagrange Point 1
- SEP: Solar Electric Propulsion
- SM: Service Module (CEV)
- SWM: Space Weather Monitor
Constellation Systems – Initial Concept

Surface System (SS)
- Long-Term Habitat for a Crew of Four at the Base Location – 5m, 15t modules
- Supports Surface Science and Exploration
- Provides Crew Mobility
- Supports Infrastructure for Lunar Resource Utilization and Lunar Commerce
- Testbed for Future Mars Missions

Robotic Precursor System (RPS)
- Reduces Risks for Manned Missions
- Discovery or New Frontiers Class Incl./ Lunar Reconnaissance Orbiter (LRO) in 2008
- Sample Return Mission to the South Pole-Aitken Basin in 2010

Ground System (GS)
- Processes SoS System Elements for Flight
- C3I for CrTS, CaTS, and SS Elements
- Flight System and Crew Recovery Simulators
- Non-Toxic Propellants – all LH2/LOX
- Crew Recovery at Edwards AFB (Primary), White Sands (Secondary), Ocean (Contingency)
- Automated Mission Planning and Flight Operations with Integrated System Health Management

Crew Transport System (CrTS)
- Four Crew CEV
- Multifunctional Hab Module (HM)
- Long Duration Loiter
- ETS-1
- Human Rated Upper Stage
- Higher T/W
- Crew Launch Vehicle
- Uses ETS-1
- Atlas V Derived First Stage
- Two-Stage Lunar Lander
- Carries CEV HM
- Autonomous Ops
- ETS-2 (Exploration Transfer Stage)
- EML1/Earth Transfer
- Long Duration Loiter
- 55t non-crew launchers
- 5m P/L Fairings
- Commercially-Procured Standard Loads

Cargo Transport System (CaTS)
- Includes CrTS Common Elements, ETS-2, LM, and 55t Launch Capability
- Prepositions Lunar Base Modules
- ETS/LM/Cargo, Direct to the Moon for Efficiency
- JIMO-Derived Solar-Electric Tug Option in Spiral 3 – Affordability Trade

In-Space System (I-SS)
- Space-Based Space Weather Monitor (SWM) for Space-Weather Predictions and Status
- Far-Side Telecommunications Coverage Using Two-Ball EML2 Halo Constellation
- Optional Near-Side Constellation for Prox Ops
System of Systems Trades

Trade Area

<table>
<thead>
<tr>
<th>Trade Area</th>
<th>Trade Options</th>
<th>Initial Concept Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spiral 2 Base Crew Size</td>
<td>1 2 3 4 5 6 8 10</td>
<td>Two Buddy Teams, Affordability</td>
</tr>
<tr>
<td>Spiral 3 Base Crew Size</td>
<td>1 2 3 4 5 6 8 10</td>
<td>Two Buddy Teams, Affordability</td>
</tr>
<tr>
<td>Spiral 2 Unresupplied Base Endurance</td>
<td>5 days 15 days 30 days 60 days</td>
<td>Operations Over Entire Lunar Month</td>
</tr>
<tr>
<td>Spiral 3 Unresupplied Base Endurance</td>
<td>30 days 90 days 180 days 600 days</td>
<td>Threshold for Sustainable Operations</td>
</tr>
<tr>
<td>Crew Near-Earth Assy Orbit</td>
<td>None - Direct LEO MEO</td>
<td>Improved PLOC, Easy Abort to Earth</td>
</tr>
<tr>
<td>Cargo Near-Earth Assy Orbit</td>
<td>None - Direct LEO MEO</td>
<td>Easier, More Rapid Launch of Spares</td>
</tr>
<tr>
<td>Crew Near-Lunar Assy Orbit</td>
<td>None Polar EML1 Equatorial Cycler Deep Space</td>
<td>Safe, Earth, and Lunar Access/Logistics</td>
</tr>
<tr>
<td>Cargo Near-Lunar Assy Orbit</td>
<td>None Polar EML1 Equatorial Cycler Deep Space</td>
<td>Mass/Cost, 10% Lower dV Than EML1</td>
</tr>
<tr>
<td>Lunar Base Deployment Plan</td>
<td>Robotic Pre-Established Base</td>
<td>Crew Safety</td>
</tr>
<tr>
<td>Lunar Base Location</td>
<td>Equatorial Limb Polar Meridional Far Side</td>
<td>Mare/Highlands Interface, Full Sky</td>
</tr>
<tr>
<td>Docking Port Type</td>
<td>Crew Specific Common Cargo Specific Surface Specific</td>
<td>Flexibility, Evolvability / Extensibility</td>
</tr>
<tr>
<td>Avionics and Software Architecture</td>
<td>Modular Reconfigurable Module Specific</td>
<td>Reliability, Mars Extensible</td>
</tr>
</tbody>
</table>

Key Trade Options

- Proposed Initial Concept
- Key Trade Options
Surface System Trades

<table>
<thead>
<tr>
<th>Trade Area</th>
<th>Trade Options</th>
<th>Initial Concept Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Setup Assy and Control</td>
<td>Robotic, Teleoperated Ground Controlled, Crew</td>
<td>Flexibility, Affordability</td>
</tr>
<tr>
<td>Habitat Construction</td>
<td>Rigid Deployable, Inflatable, Landed Modules, Translunar Tanks</td>
<td>Rigid Modules Proven on ISS</td>
</tr>
<tr>
<td>Habitat Radiation Shielding</td>
<td>Regolith “Insulation”, Prefabricated shield, Underground</td>
<td>Reduces Landed Mass of Modules</td>
</tr>
<tr>
<td>Extent of Hab Rad Shielding</td>
<td>Fully Shielded Habitat, Safe-Haven Shelter</td>
<td>Balanced Design Maximizes Safety/kg</td>
</tr>
<tr>
<td>Spiral 2 Base Power Source</td>
<td>RTG, Photovoltaic, Nuclear, From EML1, Fuel Cell</td>
<td>Affordable Initial Lunar Night Capability</td>
</tr>
<tr>
<td>Spiral 3 Base Power Source</td>
<td>RTG, Photovoltaic, Nuclear, From EML1, Fuel Cell (Backup)</td>
<td>Lunar Sustainability, Mars Extensibility</td>
</tr>
<tr>
<td>Base Power Storage</td>
<td>Fuel Cells, Batteries, Mechanical</td>
<td>More Robust, Less Complex</td>
</tr>
<tr>
<td>Ingress-Egress Methods</td>
<td>Air/Dust Locks, Depressurize Hab Module, Via Pressurized Rover</td>
<td>Reduces Risk, Inc Crew Safety</td>
</tr>
<tr>
<td>Landing Zone Separation</td>
<td>None (Land in Place), 1 km, 3+ km</td>
<td>Crew Safety and Base Sustainability vs Mobility</td>
</tr>
<tr>
<td>Base Element Offload/Transport</td>
<td>None (Land in Place), Self-Mobile, Dedicated Transporter</td>
<td>Safety and Requirements Simplicity</td>
</tr>
<tr>
<td>Crew Mobility Enablers</td>
<td>None, Short-Range Rovers (Unpress), Mobile Labs (Long Range)</td>
<td>Logistics Affordability, Science Quality</td>
</tr>
<tr>
<td>Mobility Control</td>
<td>Autonomous, Crew Operated, Base Operated, Ground Operated</td>
<td>Safety and Exploration Quality</td>
</tr>
<tr>
<td>Surface EVA Spacesuit</td>
<td>Orlan Derived, Shuttle Derived, New Robotic Enhanced, Exterior Only W Airlock UF</td>
<td>Commonality, Cost</td>
</tr>
</tbody>
</table>

Proposed Initial Concept
Key Trade Options
Crew Transportation System Trades

<table>
<thead>
<tr>
<th>Trade Area</th>
<th>Trade Options</th>
<th>CLV</th>
<th>Initial Concept Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crew Launch Vehicle (CLV)</td>
<td>EELV-M</td>
<td>EELV-H</td>
<td>Safety: Propulsion, Staging, and Abort</td>
</tr>
<tr>
<td></td>
<td>Atlas V CCB + ETS</td>
<td>Zenit S1 + ETS</td>
<td>Smaller, Lower-Cost RM, Multifunction HM</td>
</tr>
<tr>
<td>Crew Accom Partitioning</td>
<td>Separate RM and HM</td>
<td>Single Crew Space</td>
<td>Flexibility, Evolvability/Extensibility</td>
</tr>
<tr>
<td>Service Module Partitioning</td>
<td>Integrate SM with RM</td>
<td>Maintain Separate Module</td>
<td>Flexibility, Mars Extensibility</td>
</tr>
<tr>
<td>Docking Port Hardware</td>
<td>LIDS Derived</td>
<td>Existing (APAS/Russian)</td>
<td>Flexibility, Mars Extensibility</td>
</tr>
<tr>
<td>ETS and Lander Propulsion Safety</td>
<td>Engine-Out Capability</td>
<td>Increased Engine Reliability</td>
<td>Redundancy for Crew Safety</td>
</tr>
<tr>
<td>CLV Launch Pad</td>
<td>Mod Atlas Pad</td>
<td>Mod Shuttle Pad</td>
<td>Optimized for Safety, Avoids Access Conflicts</td>
</tr>
<tr>
<td>Crew Trans Propellant Tanks</td>
<td>Composite</td>
<td>Metal</td>
<td>Lower Mass/System Cost, Insulation/MMOD Benefits</td>
</tr>
<tr>
<td>Crew Trans Lunar (ETS) Propulsion</td>
<td>LOX/LH₂</td>
<td>Nuclear-Electric</td>
<td>Lowest Risk, Fast Transfer</td>
</tr>
<tr>
<td>Crew Lander Configuration</td>
<td>Staged</td>
<td>Reusable</td>
<td>LV Limited, Crew Safety</td>
</tr>
<tr>
<td>Crew Lander Propulsion</td>
<td>Storable</td>
<td>LOX/Ethanol</td>
<td>Lower Mass and System Cost</td>
</tr>
</tbody>
</table>

Key Issues

- Proposed Initial Concept
- Key Trade Options
Cargo Transporation System Trades

Trade Area

<table>
<thead>
<tr>
<th>Cargo Translunar Propulsion</th>
<th>Cargo Lander Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOX/LH₂</td>
<td>Same as Crew Trans (No Ascent)</td>
</tr>
</tbody>
</table>

Trade Options

<table>
<thead>
<tr>
<th>Spiral 2 Noncrew LV System</th>
<th>Noncrew Launch Procurement</th>
<th>Maximum LEO Launch Mass</th>
<th>Cargo Load Size Standardization</th>
<th>Cargo Translunar Propulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>EELV-H</td>
<td>Commercial</td>
<td>30t</td>
<td>Mission Specific</td>
<td>LOX/LH₂</td>
</tr>
<tr>
<td>EELV Derived</td>
<td>NASA</td>
<td>40t</td>
<td>Crew Trans Driven Std</td>
<td>Nuclear-Electric</td>
</tr>
<tr>
<td>Shuttle Derived</td>
<td>Mission Specific</td>
<td>55t</td>
<td>Surface Sys Driven Std</td>
<td>Solar-Electric</td>
</tr>
<tr>
<td>New Heavy Lift</td>
<td>Mostly Fixed Size (55t)</td>
<td>70t</td>
<td></td>
<td>Nuclear-Thermal</td>
</tr>
<tr>
<td>International</td>
<td>Reusable/Refuel</td>
<td>90t</td>
<td></td>
<td>Reusable/Refuel</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Refueling or High Isp Cargo Propulsion</td>
<td>130t</td>
<td></td>
<td>Refueling or High Isp Cargo Propulsion</td>
</tr>
</tbody>
</table>

Initial Concept Rationale

- **Affordable Development**
- **Competition for Multiple Units, Lower Cost**
- **Balance of Affordability / Reliability**
- **Commonality for Affordability / Reliability**
- **Commonality for Affordability / Reliability**
- **Commonality for Affordability / Reliability**

Key Issues

- Proposed Initial Concept
- Key Trade Options
Driving Architecture Issues

- Scope of Initial and Evolved Lunar Infrastructure
- CEV Crew Size / Crew Exchange Manifesting
- Staging Approach
- Viability of In-Situ Resource Utilization
- Non-Crewed Spacelift Payload Size vs. Number of Flight Elements
 - Larger: Fewer launches, Simpler in-space ops, Traditionally more reliable
 - Smaller: Higher flight rate > Requires reliable multi-element in-space operations and responsive-spacelift
- Effectiveness of Refueling / Reusable Elements
 - Higher payoff for Lander and Transfer Stages
 - Propellant modules vs. Propulsion modules vs. Propellant transfer
 - Reuse of tankage – surface habitats, in-situ resource storage
- Effectiveness of High Isp Propulsion Transfer for Lunar Missions
- Engaging Broader Communities – Effect on Requirements