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Background - Objectives 

•  Marshall Space Flight Center (Discovery/New Frontiers Program Office) 
requested  The Aerospace Corporation to perform an independent, objective 
assessment of the two fault management (FM) software architectures 
–  Architecture A: Layered, collaborative based FM 
–  Architecture B: Event driven, rule-based FM 

•  Review project materials from different NASA programs for each architecture 
•  Conduct interviews with subject matter experts for each architecture 
•  Assess FM software architecture 
•  Report significant findings 
•  Provide observations/recommendations 

  
This chart has not been approved for public release and is subject to the restrictions on the title chart of this material. 



Background - Ground Rules 

•  Study focused on fault management software architecture impacts for deep space 
robotic missions 

•  Programs using architectures had different risk profiles, cost/schedule constraints 
•  NASA deep space missions have unique characteristics/trades 

–  Low bandwidth, high latency vs. high bandwidth, lower latency 
–  Single vs. full redundant configurations 
–  Adaptiveness/complexity vs. predictability/simplicity  
–  Autonomous vs. ground control 
–  Fail operational (maintain mission) vs. fail safety (spacecraft safety/payload shedding)  

•  Primarily a qualitative assessment  
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Assessment Criteria and Quality Areas 

•  Criteria were categorized according to a project’s timeline 
–  Planning 
–  Requirements 
–  Design 
–  Implementation 
–  Test and verification 
–  Operations 

•  Criteria were used in reviews and fact-finding interviews 
•  Criteria relate to 2008 NASA FM Workshop recommendations (details in 

backup) 
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Specific FM Architectural Assessment Criteria 

•  Planning 
–  Clarifies organization of resources and roles  
–  Balances flexibility and complexity in early design choices and test effort 

impacts 
•  Requirements 

–  Addresses program unique mission requirements to provide a reliable, 
safe, FM capability 

–  Considers the entirety of FM functionality when allocating requirements 
to HW, SW and operations 

•  Design 
–  Is well coordinated and appropriate to mission needs 
–  Utilizes architectural representation and analysis techniques that 

improve the design, implementation and mitigate risk 
–  Manages system complexity of robotic deep space missions and 

considers spacecraft robustness early in the design 
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Specific FM Architectural Assessment Criteria 

•  Implementation 
–  Facilitates reuse 
–  Easily adapts to change 
–  Demonstrates reliable FM capabilities/features for specified mission 

•  Test  and Verification 
–  Facilitates test design and execution 
–  Identifies the level of risk exposure 

•  Operations 
–  Provides understanding of operational impacts on design and implementation 
–  Facilitates ease of operations 
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FM Overview:  Architecture A 

•  Object-oriented, collaborative logic approach 
–  FM decision logic distributed across objects in flight software  

•  Layered control design 
–  Component - objects interfacing with HW but provide virtualized 

component to detect and respond 
–  Performance - objects monitoring subsystem domain areas 
–  System - objects performing S/C level functions 

•  Each layer  
–  Relies on lower layers to perform more primitive functions 
–  Provides services to higher layers 
•  Uses a “pull” approach to provide fault data as needed to 

upper layer 
–  Responses not allowed to affect other objects at same or higher 

level but can manipulate lower level object 

Architecture A  adapts well when virtual components can be reused 

Performance Level 

Component Level 

System Level 
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FM Overview: Architecture B 

•  Centralized, rule-based, monitor-response FM 
–  Rules provide fault monitoring if-then conditions to handle anomalies 
–  Triggered rules invoke a macro response 
–  Macros contain stored command sequences to address fault 
–  All rules execute at 1Hz rate 

•  FM decision logic is not compiled into the flight software 
–  Multiple rules and macros are interpreted at run-time 
–  Rules are prioritized so response macros can be pre-empted before completing 

  
Architecture B  provides adaptive rule/macro interpretation 
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Significant Findings: Planning and Requirements 
 
•  Planning improved on later projects 

–  Architecture familiarity/maturity 
–  Strong reliance on prior human-directed program experience  
–  Identifying differences in current program relative to heritage was significant to avoid cost/

schedule surprises 

•  Formalized methodology to analyze FM mission behavior/interactions was lacking 
–  Strong reliance on engineering judgment  
–  No formalized use case scenario development (e.g. off-nominal cases) 
–  No formalized analysis of state variable interactions, fault coverage, contention/race 

conditions  
–  SW FMEA (Failure Mode and Effects Analysis) was not practiced to identify SW risk 

mitigations and/or SW requirements 

•  Some processes risked late identification of requirements 
–  Reliance on later testbed environments vs. early sim modeling/prototypes 
–  Many lower level requirements are the result of FMECAs (Failure Modes Effects and 

Criticality Analysis) and fault trees that may not be available until late in the program     
raising risk for late requirements 

 

 Hero-driven engineering judgment will not scale with mission complexity 
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Significant Findings: Design and Implementation 

•  Common strengths 
–  Tailoring multiple detections and controlled response relative to mission phase 
–  Ability to account for hardware unavailability 
–  Flexibility to address program unique requirements 
–  FM reuse dependent on design and similarity to prior missions 

•  Common weaknesses 
–  Design process did not include model-driven engineering 
–  Utilization of FMECA but no formal functional failure analysis specification or guarantee 

the design followed the FMECA 
•  Explicating subtle interactions remained a challenge 

–  No architectural representation suitable for decision trades from changing priorities 
•  Graceful degradation evaluation, software resource observability, constraint 

management, design pattern representation 
•  Scalability of FM changes and their relationships to higher mission objectives 

–  FM design potential was not always realized by the implementation 
–  Documentation often created post-design  

 
 
 

Better model-driven engineering practices are needed  
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Significant Findings: Test,  Verification & Operations 

•  Previous human experience critical to test planning and test resource allocation  
•  Value of SIL/HIL test bed development/availability well understood 

–  Intended features of the FM architecture - testable 
–  Late discovery of design/logic flaws - problematic 

•  Ability to tailor fault management on orbit via uploadable thresholds, 
persistences, and hardware availability data 

•  Insight into side-effects were not always known a priori 
•  Contingency planning not integral to FM architecture 

–  Little evidence that architecture teams involved in contingency plans or ops personnel in 
FM design reviews 

 

Contingency planning could be better integrated into development 
practices  
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Observations 

•  The FM challenges of deep space exploration and mission-centric/human-critical 
projects will drive architectural changes that force a rethinking of long-held design 
assumptions: 

–  Sufficiency of fixed, predetermined, simplified view of anomaly management (suited for 
fail-safety) over an adaptive, contextually appropriate situational response (suited for fail-
operational) 

–  Sufficiency of ground control over on-board autonomy (in low BW, hi latency) 
–  Recognition of context-sensitive priority deadlines vs. fixed hierarchy priority 
–  Land navigation FM strategies (goal-oriented over component-directed monitoring) 
–  Control hierarchies balancing vehicle safety and mission completion can blur bus vs. 

mission separation of concerns 
–  Single fault tolerant designs vs. multiple fault coordinated designs 

•  While current FM designs continue to evolve and mature, system engineering 
practices have not adequately allayed concerns of how to make and manage these 
FM design tradeoffs 
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Development risk will need to be mitigated as these design alternatives mature 
 This chart has not been approved for public release and is subject to the restrictions on the title chart of this material. 



Recommendations 
Recommendations Benefits 
Develop formal 
functional failure 
analysis specifications 
which are analyzable 
for completeness and 
consistency  
 

• Enables automated path analysis to identify potential race conditions 
from incorrect persistence, rate group assignments, timeliness, etc 
• Enables analysis of specification alignment with implementation 
• Evaluate fault verification sensitivity to transient conditions 
• Understand design robustness  

Formalize  analyzable 
architectural 
representations 
through model driven 
engineering practices 
 

• Design model representations (e.g. state generation, rule-macro 
dependencies) can be used to auto-generate FM detection/response 
logic code, rules, macros, variables 
• Enables design-code alignment assessment (Are you building what 
was designed?) 
• Enables dynamic discrete event simulations from architectural models 
to evaluate alternative design strategies (e.g. sufficiency of rate group/
schedule changes) 
• Can define design patterns, domain-specific profiles to characterize 
mission-specific needs, goals, product-line architectures 
• Can minimize implementation errors via naming, design pattern 
conventions 
• Can evaluate design principles via model checking (e.g. rule 
dependency constraints) 
• Can evolve architectural changes through model transformations 
• Can leverage commercial tool integration  
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Recommendations 
Recommendations Benefits 

Develop system engineering 
(e.g. SysML) models for 
constraint management, use 
case analysis, SW FMEA 
management 
 

• Identifies off-nominal conditions, their mitigation 
choices to improve contingency plans 
• Can facilitate stress testing design 
• Enables analysis of software design decisions 
• Can model cross-cutting constraint checks and use 
“satisfies” traces to verify rules/code compliance 
(e.g. power, weight constraints) 
• Can identify key  HW/software resources to 
improve software observability (e.g. watermarking) 
• Formalizes rationale for strategy choices 

Develop reward-based models 
to evaluate performance/
reliability/ dependability 
tradeoffs for selected 
scenarios 
 

• Enables objective analysis of design choice 
impacts on mission accomplishment  in terms of 
performability 
• Assists in assessing strategy/goal options for 
adaptive fault tolerant systems with graceful 
degradation 
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Yellow Denotes Preferred Practice 
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Recommendations 
Recommendations Benefits 
Develop techniques to dynamically 
improve software observability of FM 
resources (e.g. pre-planned observer 
agents, potential rule fire tracking) 

• Improve implementation of context-dependent 
telemetry collection 

Evaluate effectiveness of context 
dependent strategies 

• Enable autonomous context-dependent telemetry 
collection (e.g. dynamic rule activation/creation or 
preplanned layered strategies for selected SW/
HW observability) 
• Improve remote situation assessment 

Research/evaluate design alternatives for 
deep-space robotic missions and apply 
these to architectures 
 

• Identify implementation techniques to moderate 
between deterministic and adaptive control 
• Evolve architectural FM design toward phase-
sensitive goal-oriented strategy 
• Understand whether agent-based fault 
containment can be used in remote diagnosis 
• To assess effectiveness of ground-enabled/
autonomy strategy options, autonomous HW 
reconfiguration 

Conduct multiple failure stress testing of 
adaptive designs 
 
 
 
        Pink Denotes Possible Improvement 
 

• Determine design robustness/effectiveness of 
self-supervised learning strategies 
• Can identify stability limits of strategy options via 
alpha-beta gaming 
• Assess adaptive problem solving 
• Environment tested prototypes 
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Summary 

•  Two fault management architecture families were qualitatively assessed 
•  Given unknown emergent behaviors, future robotic space missions 

(especially deep space missions) will require greater autonomy choices that 
will require rethinking of some fault management design assumptions/
priorities 

•  Both architectures have strengths with respect to scalability of emergent 
behavior, but emphasize different FM paradigms 

•  While an architecture may employ an advantageous software approach, the 
challenges to fault management remain a systems engineering challenge 
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Summary Details 
•  Two fault management architecture families were qualitatively assessed 

–  Both architectures have mature heritage and provide varying degrees of fail-safe fault 
protection but both architectures will need to evolve to provide reliable goal-oriented, context-
sensitive capabilities demanded by future robotic space mission explorations 

–  Site interviews elucidated the need to maintain mission through critical orbit insertion 
maneuvers as well as mission-specific surface operations. Several software development 
practices were also emphasized. 

•  Given unknown emergent behaviors, future robotic space missions (especially deep 
space missions) will require greater autonomy choices that will require rethinking of 
some fault management design assumptions/priorities 

•  Both architectures have strengths with respect to scalability of emergent behavior, 
but emphasize different FM paradigms 
–  A:  Exploits a virtualized component  paradigm that can closely map to HW configurations but 

will need to expand and integrate system level control  strategies to understand goal-directed 
behaviors in the presence of fault conditions.  Although the architecture has the potential to 
do so, no current implementation supports this integration.  FM  without of situational context  
will have limited effectiveness.  Performance of layered self-organizing strategies will need to 
be studied. 

–  B:  Uses a rule based control  paradigm which can be flexibly organized into prioritized/
hierarchical rule sets.  Although rule sets can be organized into goal-oriented strategies, their 
effective use faces many challenges with rule contention, conflict resolution, distraction.  
Performance of interpreted rule schemes will need to be re-evaluated as more context 
sensors are needed to be assessed at rates higher than 1Hz. 

•  While an architecture may employ an advantageous software approach, the 
challenges to fault management remain a systems engineering challenge   

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material. 



NASA Fault Management Workshop Recommendations 
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Assessment Criteria and Recommendations Map 
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Sample Evaluation Questions 
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