
© The Aerospace Corporation 2012

Independent Assessment of Two
NASA Fault Management Software
Architectures

Phillip Schmidt
Donald Brueck
Mark Rokey
Joseph Pope

The Aerospace Corporation

 2012 NASA Fault Management Workshop

April 10-12, 2012, New Orleans, LA
PUBLIC RELEASE IS NOT AUTHORIZED. Distribution limited to NASA and their US Contractors only. Further dissemination only with the approval of NASA.

EXPORT WARNING. Portions of this presentation may contain export controlled technical data within the definition of the International Traffic in Arms Regulations (ITAR) and
therefore subject to the export control laws of the US Government. Transfer of this data by any means to foreign persons or their representatives, whether in the US or abroad, without a
validated export authorization or approval from the US Department of State, is prohibited. Violations of ITAR are subject to fines, imprisonment, or both, under Title 22, United States
Code (U.S.C.), Section 2778, Control of Exports and Imports and title 50 U.S.C., Appendix 2410, Violations.

DESTRUCTION NOTICE. When this document is no longer required, destroy by any method that will prevent reconstruction of the information.

2

Agenda
•  Background
•  Assessment Criteria
•  FM Architecture Overview
•  Significant Findings
•  Observations
•  Recommendations

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Background - Objectives

•  Marshall Space Flight Center (Discovery/New Frontiers Program Office)
requested The Aerospace Corporation to perform an independent, objective
assessment of the two fault management (FM) software architectures
–  Architecture A: Layered, collaborative based FM
–  Architecture B: Event driven, rule-based FM

•  Review project materials from different NASA programs for each architecture
•  Conduct interviews with subject matter experts for each architecture
•  Assess FM software architecture
•  Report significant findings
•  Provide observations/recommendations

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Background - Ground Rules

•  Study focused on fault management software architecture impacts for deep space
robotic missions

•  Programs using architectures had different risk profiles, cost/schedule constraints
•  NASA deep space missions have unique characteristics/trades

–  Low bandwidth, high latency vs. high bandwidth, lower latency
–  Single vs. full redundant configurations
–  Adaptiveness/complexity vs. predictability/simplicity
–  Autonomous vs. ground control
–  Fail operational (maintain mission) vs. fail safety (spacecraft safety/payload shedding)

•  Primarily a qualitative assessment

4

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Assessment Criteria and Quality Areas

•  Criteria were categorized according to a project’s timeline
–  Planning
–  Requirements
–  Design
–  Implementation
–  Test and verification
–  Operations

•  Criteria were used in reviews and fact-finding interviews
•  Criteria relate to 2008 NASA FM Workshop recommendations (details in

backup)

 This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Specific FM Architectural Assessment Criteria

•  Planning
–  Clarifies organization of resources and roles
–  Balances flexibility and complexity in early design choices and test effort

impacts
•  Requirements

–  Addresses program unique mission requirements to provide a reliable,
safe, FM capability

–  Considers the entirety of FM functionality when allocating requirements
to HW, SW and operations

•  Design
–  Is well coordinated and appropriate to mission needs
–  Utilizes architectural representation and analysis techniques that

improve the design, implementation and mitigate risk
–  Manages system complexity of robotic deep space missions and

considers spacecraft robustness early in the design

 This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Specific FM Architectural Assessment Criteria

•  Implementation
–  Facilitates reuse
–  Easily adapts to change
–  Demonstrates reliable FM capabilities/features for specified mission

•  Test and Verification
–  Facilitates test design and execution
–  Identifies the level of risk exposure

•  Operations
–  Provides understanding of operational impacts on design and implementation
–  Facilitates ease of operations

 This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

FM Overview: Architecture A

•  Object-oriented, collaborative logic approach
–  FM decision logic distributed across objects in flight software

•  Layered control design
–  Component - objects interfacing with HW but provide virtualized

component to detect and respond
–  Performance - objects monitoring subsystem domain areas
–  System - objects performing S/C level functions

•  Each layer
–  Relies on lower layers to perform more primitive functions
–  Provides services to higher layers
•  Uses a “pull” approach to provide fault data as needed to

upper layer
–  Responses not allowed to affect other objects at same or higher

level but can manipulate lower level object

Architecture A adapts well when virtual components can be reused

Performance Level

Component Level

System Level

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

FM Overview: Architecture B

•  Centralized, rule-based, monitor-response FM
–  Rules provide fault monitoring if-then conditions to handle anomalies
–  Triggered rules invoke a macro response
–  Macros contain stored command sequences to address fault
–  All rules execute at 1Hz rate

•  FM decision logic is not compiled into the flight software
–  Multiple rules and macros are interpreted at run-time
–  Rules are prioritized so response macros can be pre-empted before completing

Architecture B provides adaptive rule/macro interpretation

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Significant Findings: Planning and Requirements

•  Planning improved on later projects

–  Architecture familiarity/maturity
–  Strong reliance on prior human-directed program experience
–  Identifying differences in current program relative to heritage was significant to avoid cost/

schedule surprises

•  Formalized methodology to analyze FM mission behavior/interactions was lacking
–  Strong reliance on engineering judgment
–  No formalized use case scenario development (e.g. off-nominal cases)
–  No formalized analysis of state variable interactions, fault coverage, contention/race

conditions
–  SW FMEA (Failure Mode and Effects Analysis) was not practiced to identify SW risk

mitigations and/or SW requirements

•  Some processes risked late identification of requirements
–  Reliance on later testbed environments vs. early sim modeling/prototypes
–  Many lower level requirements are the result of FMECAs (Failure Modes Effects and

Criticality Analysis) and fault trees that may not be available until late in the program
raising risk for late requirements

 Hero-driven engineering judgment will not scale with mission complexity

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Significant Findings: Design and Implementation

•  Common strengths
–  Tailoring multiple detections and controlled response relative to mission phase
–  Ability to account for hardware unavailability
–  Flexibility to address program unique requirements
–  FM reuse dependent on design and similarity to prior missions

•  Common weaknesses
–  Design process did not include model-driven engineering
–  Utilization of FMECA but no formal functional failure analysis specification or guarantee

the design followed the FMECA
•  Explicating subtle interactions remained a challenge

–  No architectural representation suitable for decision trades from changing priorities
•  Graceful degradation evaluation, software resource observability, constraint

management, design pattern representation
•  Scalability of FM changes and their relationships to higher mission objectives

–  FM design potential was not always realized by the implementation
–  Documentation often created post-design

Better model-driven engineering practices are needed
 This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Significant Findings: Test, Verification & Operations

•  Previous human experience critical to test planning and test resource allocation
•  Value of SIL/HIL test bed development/availability well understood

–  Intended features of the FM architecture - testable
–  Late discovery of design/logic flaws - problematic

•  Ability to tailor fault management on orbit via uploadable thresholds,
persistences, and hardware availability data

•  Insight into side-effects were not always known a priori
•  Contingency planning not integral to FM architecture

–  Little evidence that architecture teams involved in contingency plans or ops personnel in
FM design reviews

Contingency planning could be better integrated into development
practices

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Observations

•  The FM challenges of deep space exploration and mission-centric/human-critical
projects will drive architectural changes that force a rethinking of long-held design
assumptions:

–  Sufficiency of fixed, predetermined, simplified view of anomaly management (suited for
fail-safety) over an adaptive, contextually appropriate situational response (suited for fail-
operational)

–  Sufficiency of ground control over on-board autonomy (in low BW, hi latency)
–  Recognition of context-sensitive priority deadlines vs. fixed hierarchy priority
–  Land navigation FM strategies (goal-oriented over component-directed monitoring)
–  Control hierarchies balancing vehicle safety and mission completion can blur bus vs.

mission separation of concerns
–  Single fault tolerant designs vs. multiple fault coordinated designs

•  While current FM designs continue to evolve and mature, system engineering
practices have not adequately allayed concerns of how to make and manage these
FM design tradeoffs

13

Development risk will need to be mitigated as these design alternatives mature
 This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Recommendations
Recommendations Benefits
Develop formal
functional failure
analysis specifications
which are analyzable
for completeness and
consistency

• Enables automated path analysis to identify potential race conditions
from incorrect persistence, rate group assignments, timeliness, etc
• Enables analysis of specification alignment with implementation
• Evaluate fault verification sensitivity to transient conditions
• Understand design robustness

Formalize analyzable
architectural
representations
through model driven
engineering practices

• Design model representations (e.g. state generation, rule-macro
dependencies) can be used to auto-generate FM detection/response
logic code, rules, macros, variables
• Enables design-code alignment assessment (Are you building what
was designed?)
• Enables dynamic discrete event simulations from architectural models
to evaluate alternative design strategies (e.g. sufficiency of rate group/
schedule changes)
• Can define design patterns, domain-specific profiles to characterize
mission-specific needs, goals, product-line architectures
• Can minimize implementation errors via naming, design pattern
conventions
• Can evaluate design principles via model checking (e.g. rule
dependency constraints)
• Can evolve architectural changes through model transformations
• Can leverage commercial tool integration

14
Green Denotes Standard Practice

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Recommendations
Recommendations Benefits

Develop system engineering
(e.g. SysML) models for
constraint management, use
case analysis, SW FMEA
management

• Identifies off-nominal conditions, their mitigation
choices to improve contingency plans
• Can facilitate stress testing design
• Enables analysis of software design decisions
• Can model cross-cutting constraint checks and use
“satisfies” traces to verify rules/code compliance
(e.g. power, weight constraints)
• Can identify key HW/software resources to
improve software observability (e.g. watermarking)
• Formalizes rationale for strategy choices

Develop reward-based models
to evaluate performance/
reliability/ dependability
tradeoffs for selected
scenarios

• Enables objective analysis of design choice
impacts on mission accomplishment in terms of
performability
• Assists in assessing strategy/goal options for
adaptive fault tolerant systems with graceful
degradation

15

Yellow Denotes Preferred Practice

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Recommendations
Recommendations Benefits
Develop techniques to dynamically
improve software observability of FM
resources (e.g. pre-planned observer
agents, potential rule fire tracking)

• Improve implementation of context-dependent
telemetry collection

Evaluate effectiveness of context
dependent strategies

• Enable autonomous context-dependent telemetry
collection (e.g. dynamic rule activation/creation or
preplanned layered strategies for selected SW/
HW observability)
• Improve remote situation assessment

Research/evaluate design alternatives for
deep-space robotic missions and apply
these to architectures

• Identify implementation techniques to moderate
between deterministic and adaptive control
• Evolve architectural FM design toward phase-
sensitive goal-oriented strategy
• Understand whether agent-based fault
containment can be used in remote diagnosis
• To assess effectiveness of ground-enabled/
autonomy strategy options, autonomous HW
reconfiguration

Conduct multiple failure stress testing of
adaptive designs

 Pink Denotes Possible Improvement

• Determine design robustness/effectiveness of
self-supervised learning strategies
• Can identify stability limits of strategy options via
alpha-beta gaming
• Assess adaptive problem solving
• Environment tested prototypes

16 This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Summary

•  Two fault management architecture families were qualitatively assessed
•  Given unknown emergent behaviors, future robotic space missions

(especially deep space missions) will require greater autonomy choices that
will require rethinking of some fault management design assumptions/
priorities

•  Both architectures have strengths with respect to scalability of emergent
behavior, but emphasize different FM paradigms

•  While an architecture may employ an advantageous software approach, the
challenges to fault management remain a systems engineering challenge

17

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

18

Backup

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Summary Details
•  Two fault management architecture families were qualitatively assessed

–  Both architectures have mature heritage and provide varying degrees of fail-safe fault
protection but both architectures will need to evolve to provide reliable goal-oriented, context-
sensitive capabilities demanded by future robotic space mission explorations

–  Site interviews elucidated the need to maintain mission through critical orbit insertion
maneuvers as well as mission-specific surface operations. Several software development
practices were also emphasized.

•  Given unknown emergent behaviors, future robotic space missions (especially deep
space missions) will require greater autonomy choices that will require rethinking of
some fault management design assumptions/priorities

•  Both architectures have strengths with respect to scalability of emergent behavior,
but emphasize different FM paradigms
–  A: Exploits a virtualized component paradigm that can closely map to HW configurations but

will need to expand and integrate system level control strategies to understand goal-directed
behaviors in the presence of fault conditions. Although the architecture has the potential to
do so, no current implementation supports this integration. FM without of situational context
will have limited effectiveness. Performance of layered self-organizing strategies will need to
be studied.

–  B: Uses a rule based control paradigm which can be flexibly organized into prioritized/
hierarchical rule sets. Although rule sets can be organized into goal-oriented strategies, their
effective use faces many challenges with rule contention, conflict resolution, distraction.
Performance of interpreted rule schemes will need to be re-evaluated as more context
sensors are needed to be assessed at rates higher than 1Hz.

•  While an architecture may employ an advantageous software approach, the
challenges to fault management remain a systems engineering challenge

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

NASA Fault Management Workshop Recommendations

20 This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Assessment Criteria and Recommendations Map

21
This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Sample Evaluation Questions

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Sample Evaluation Questions

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

Sample Evaluation Questions

This chart has not been approved for public release and is subject to the restrictions on the title chart of this material.

