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Space Radiation ShieldingQyerview

——
« Deep space Radiation exposures are very different from LEO

* Material radiation shielding has matured; has limited or no
potential of avoiding continuous radiation exposures; is low
earth orbit (LEO) technology

« Biological uncertainties from long duration radiation exposures
are unknown

« Best strategy is to avoid radiation hitting the spacecraft
« Magnetic fields have been found to have adverse health effects
 The best hope is electrostatic active shielding

« Comprehensive technology; synergistically includes
electrostatic, material and hybrid magnetic shielding (only if

safer)
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NIAC Phase | Goals™ .

———
« Simulate, test and validate an electrostatic Gossamer
structure to provide radiation protection

« Experimentally verify electron deflection efficiency with
charged Gossamer structures

« Study suitable Gossamer shapes to enhance
deflection and stiffness

 |nvestigate larger charged Gossamer structure
» Consider power requirements ’
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Solar Flare events
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» Active radiation shielding
requires a light-weight
solution

* Electrostatic deflection

requires a large
capacitance (i.e. surface)

« Solution: charged
Gossamer structures

conducting
membranes
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Vacuum Chamber:

- No charge flux
- 10cm structure

- External power | Ramp Up to 10 kV

supply

Electrostatic Inflation of Ribbed

Structure for Spheroidal Shapes
lllustrates ‘

electrostatic
inflation of
Gossamer
Structure
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How fast can a large, spherical
electrostatic Gossamer structure be
accelerated?

Electrostatic
Inflation .
Pressure  =xternal Acceleration
-
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O(x=&,y=6,2=5)

40000 ﬂ

Positive barrier deflects
protons
Negative barrier deflects
electrons
20000

Damaging high-energy
protons kept out of this region

ast quantities of low-energy
electrons kept out of this region
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Nominal solar wind and photo-electron current dominate power evaluation
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Complex Power

Nominal solar wind and photo-electron current dominate power evaluation
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Cﬁa.rgod Isolated SpheresRower Analysis

Nominal Energy 7, ; = 40 eV

Low energy solar wind and
photo-electron current
dominate power requirement

MeV ions of solar storms and
GeV ions of galactic radiation
have such low densities to
result in minimal power
requirements.

Particle Density n.; (cm™3)
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SPE Component: H™ (Proton)
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e GCR Components: 1H™", $Het?
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1977 solar minimum GCR
spectrum power analysis -
minimal power requirements

GCR Particle Energy Eccr (AMeV)
Power Requirement log,,(Ppet) (W)
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Enhanced Charged
Gossamer Charge
Deflection Experiments

Coulomb membrane structures with up to
10kV are subjected to an electron flux with up
to 5keV in a vacuum chamber to investigate
charge deflection, as well as membrane
structure stability.

Current is measured through a faraday cup
on a moving boom.

Faraday cup €harge
flux sensor on pivot
point to sweep charge
flow downstream of
Gossamer structure
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In the presence of
charge flux, interesting
coupling between the
electrostatically
supported membrane
and the charge flow have
been observed.

The vibrations are on the
order of 4Hz, and
depend on the flux
energy, membrane
voltage, and structure
shape.

Electron gun emitting at 5 keV, 5 mA

Membrane structure starting voltage of
4kV with vibrations present
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The Way Forward .

ME http://www.youtube.com/watch?v=clGV9Xuvdd4 @
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Active radiation shielding employing charged Gossamer
structures is feasible and achievable with the existing
technology

Significant reduction in radiation exposure is achieved with
large electrostatic repulsion

Significantly helps alleviate biological uncertainties

Carefully configured positive and negative components
create a charge flux wake effect, i.e. radiation safe zone

Future work will need to investigate further to coupling
between high energy radiation deflection, Gossamer
shapes and sizes, power considerations, and space
weather impact.

Synergistically include electrostatic, material and hybrid

magnetic shielding (only if safer)
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Backup
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Accomplishments ..

.
o —

*Experimentally verified electron deflection
efficiency with charged Gossamer structures
*Experimentally and analytically studied several

Gossamer shapes and materials to enhance
deflection and stiffness
‘*ldentified ~ 5 Hz structural vibrations due to
electrostatic inflation and charge flux coupling
‘»*Studied power requirements for deep space
shielding
“*1 journal paper; 5 conference papers; 4 reports
1 patent
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