The Potential for Ambient Plasma Wave Propulsion

NIAC Spring Symposium
March 27, 2012
Jim Gilland, George Williams
Ohio Aerospace Institute
Outline

I. Justification
II. Concept Description
III. Approach
IV. Results to date
 A. Magnetosphere Modeling
 • Ex.: Jupiter
 B. Wave Propagation
 • Ray tracing
 C. Antenna System
 • Sizing and power loading
V. Future Work
Justification

• Robust space exploration will ultimately require “living off the land”

• In-Situ propellants and propulsion will reduce launch needs
 – “Near Term” advanced propulsion (chemical, nuclear thermal, NEP) require IMLEO ~ 300 – 1000 mT
 – Feasibility of launching such masses on a regular basis is small

• Need to examine potential extraterrestrial sources for propulsion
• Utilize onboard power to couple to environment through plasma waves
 – First look: Alfven waves
 • Observed naturally in astrophysics
 • Postulated as mechanisms for heating and particle acceleration
• Radiate wave energy directionally to produce motion
 – Antennae designed to couple to correct wave and direction
 – Thrust ~ Wave field energy \(\frac{\partial B^2}{2\mu_0} \)
Analysis Approach

• Develop physical models for wave production/propulsion
• Assess possible environments
• Model wave propagation in relevant environments (Ray tracing)
• Use propagation results in system design (ANTENA rf plasma code)
 – Antenna size
 – Antenna loading (power)
 – Thrust
Alfven Wave Physics

- Low frequency waves in magnetized plasmas

- 3 modes:
 - Shear (|| B)
 - Compressional (isotropic)
 - Magnetoacoustic (⊥ B)

- Observed in terrestrial, Jovian, and Solar magnetospheres
 - Offered as possible explanation for coronal heating, acceleration of solar wind, Io plasma torus interactions

\[\omega = k \cos(\theta)V_A \]
\[\omega = k V_A \]
\[\omega^2 = k^2 (V_A^2 + c_s^2) \]
\[V_A = \sqrt{\frac{B_0^2}{\rho \mu_0}} \]
\[c_s = \sqrt{\frac{T_e}{M_i}} \]
Ray Tracing Approach

- Dispersion relation gives wavelength and frequency as functions of environment (B, \(\rho \))

\[
(\omega^2 - k_z^2 V_A^2)(\omega^4 - \omega^2 k^2 (V_A^2 + c_s^2) + c_s^2 V_A^2 k^2 k_z^2) = 0
\]

\[
\vec{V}_A(x,y,z) = \frac{\vec{B}(x,y,z)}{\mu_0 \rho(x,y,z)}
\]

\[
c_s = \sqrt{\frac{kT_e}{M_i}}
\]

\[
k = \sqrt{k_z^2 + k^2}
\]

- Wavelength (k) depends on position through magnet and density fields
- Ray tracing follows wave energy as it propagates in magnetosphere
- Requires representative initial conditions
 - (x,y,z), (kx, ky, kz)
Establish Potential Environments

- First approximation Magnetospheres
 - Dipole magnetic field
 - Axisymmetric density
 - Uniform T_e
- Calculate simplified local k for ray tracing
- Assess ray propagation in spatially varying fields
Jovian Magnetosphere

- Dipole strength ~ 4 nG Rj³
- Plasma density curve fit from literature
- Using a simplified dispersion relation, calculate ω, and k for initial conditions
- Use full fields model for ray tracing
Antenna Modeling

- Antennas determine the dominant axial and perpendicular wavelengths launched
 - Antenna design determines types of fields
 - E, B - Axial, radial, azimuthal
 - Antenna dimensions determine dominant wavelengths
- The desired wavelengths are determined from local B and density values
ANTENA Code

- Warm plasma cylindrical wave code
- Originally designed for fusion wave heating applications
 - Radial profiles of n_e, T_e (not self consistent)
 - Axially uniform B_0, n_e
 - Uses real antenna designs/wavelength spectra
 - Calculates radiated power, antenna/plasma coupling
- Can apply ANTENA to the calculated local plasma parameters to determine best antenna size, design for the wave propulsion application
Example Antenna - Nagoya III

- Originally designed for ICRH heating in tokamaks
- Launches symmetric, left hand and right handed waves (m= 0, -1, 1)
- Antenna Length L gives peak coupling at wavelengths $\lambda \sim 2L$
RESULTS
Magnetosphere Models

- Standardized simplified model for dipole fields allows calculation structure to be applied to multiple environments
 - Jovian and Terrestrial environments described to date
Ray Tracing Analysis

- Ray tracing analysis generated from first principles in Mathematica
- Initial conditions generated for multiple Alfven modes throughout Jovian magnetosphere
 - Fast modes also depend on k_\perp - assumed to be $\approx k_z$ for initial calculations
- Wave propagation has been examined throughout the Jupiter magnetosphere
 - Parallel and perpendicular waves observed
 - Currently examining results for resonance absorption and reflections
Ray tracing initial conditions

- Spatial locations span a range of conditions
 - \((2 \, \text{Rj} < r < 25 \, \text{Rj})\)
- Corresponding wavelengths \((k_z, k_{\perp})\) calculated as function of position
Ray Tracing for Jovian Magnetosphere

• Initial ω, k_z, k_\perp determined from position
• Ray propagation adjusts with changing plasma and B parameters
• Parallel and perpendicular modes can appear.
• Some indications of resonance absorption
Antenna System

• Initial conditions indicate large antenna dimensions, \(\sim 10 - 100\,\text{\textquotesingle}s\,\text{km} \)
• Some representative antenna in that size range have been modeled in the ANTENA code, using Jupiter magnetospheric B and density values
• Currently examining the effects of antenna size on coupling
Preliminary Antenna Length studies

- Assumes
 - Nagoya III antenna
 - Fixed diameter: 20 m

- Vary length from 10 – 1000 km, examine antenna loading, power deposition with k_z
Early Observations

- Higher impedance occurs at small k_z
- Impedance inversely dependent on antenna length (fixed k_\perp)
 - Better coupling at $10 \text{ km} < L < 100 \text{ km}$
 - 100 km length gives $10 \times$ better coupling for Alfvén waves
- Further optimization of k_\perp to be done
Summary of Results

• Magnetosphere models have been developed
 – Jupiter, Earth
 – Solar requires modification to pure dipole model

• Ray tracing tool has been developed
 – Currently being applied to Jovian case
 – Results thus far are similar to previous analyses in the literature

• Antenna modeling tool is operating
 – Initial antenna sizing, loading is being conducted in parallel with ray tracing results
Future Work

- Conclude Jupiter case
 - Finalize wave propagation requirements
 - Find representative antenna designs and power requirements

- Repeat for Earth, Sun
 - Modify dipole for solar magnetic field model

- Estimate system performance
 - Thrust, Thrust vectoring, power

- Assess non-linear wave option