A‘Dﬂ 2012 NASA Spacecraft Fault Management Workshop @

- New Orleans, LA

CITY OF NEW ORLEANS

Goal-Based Fault Management

Daniel Dvorak
Systems & Software Division

JPL / Caltech

4/10/2012 Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.

Purpose of this Talk

Broaden our thinking about architectures
for fault management

“A mind once stretched by a new idea
never regains its original dimensions.”

Oliver Wendell Holmes Jr.

“Point of view is worth 80 1Q points.”

Alan Kay, 1982

4/10/2012 Goal-Based Fault Management 2

Motivational Points from other speakers @

Jon Patterson (NASA/MSFC)
e Combined nominal and fault management teams
* Concept of “goal tree / success tree”

Lee Morin (NASA/JSC)

* |Importance of parent/child relationships (in Caution & Warning)

Phillip Schmidt (Aerospace)
* “force a rethinking of long-held design assumptions”
* “adaptive, contextually appropriate situational response”

* “goal-oriented over component-directed monitoring”

Mark Derriso (AFRL/W-P)
» “state awareness is the key to health management”

4/10/2012 Goal-Based Fault Management 3

Outline

e Assessment criteria

* Overview of two FM architectural styles

— Monitor-Response-Inhibit style

— Goal-based style

 Example of goal-based FM

* Framework complexity vs. operations complexity

* Summary

* Epilogue

4/10/2012

Goal-Based Fault Management

FM Architecture Assessment Criteria @

1. Emphasize failure detection over fault detection
— more important to respond to loss of function, no matter

how it occurs, than only to a set of anticipated faults
— Lack of faults # health

2. Upon failure detection ...
— allow unaffected activities to continue executing
(graceful degradation)
— decide responses based on context

3. Prefer a single mechanism for control
— Having different mechanisms for nominal control versus
fault management creates an interface that is harder to
engineer and validate (a 2-headed monster)

4/10/2012 Goal-Based Fault Management 5

Architectural Style @
Monitor-Response-Inhibit (1 of 2)

Monitors Fault Protection

* Monitors look for symptoms of e
specific problems

* Monitors have tunable e L eRoreE
,] , 0.nIOI" T| esponse T|
thresholds, e.g., ‘confidence), Monitor 2 | 7 Response 2| |7
Monitor 1 Response 1
{ . V4 { V4 1 1
persistence’ and ‘decay q 1
7N
 Thresholds are constant, not
- . -l = A e
activity-specific ,
y->p Nominal Control
e A tﬂppEd monitor trlggers a (Sequencer, Command Logic, and

Programmed Behaviors)

specific response (rule-like: measurements 4 commands

“when x do y”)

System Under Control

4/10/2012 Goal-Based Fault Management 6

Architectural Style @
Monitor-Response-Inhibit (2 of 2)

Responses Fault Protection
* A response may kill a sequence ———
and/or start a sequence
* Monitors & responses typically Monitor m Response r
integrated after nominal ot s)) [Respomes]
control system working Monitor 1 | = Response 1] f=
e Often called “rule-based” or 7 ! -
o 7))
autonomy . S5
Inhibits Nominal Control
o . (Sequencer, Command Logic, and
* Inhibit flag on monitors and Programmed Behaviors)
responses can be set/reset by measurements commands
ground and by responses System Under Control

4/10/2012 Goal-Based Fault Management 7

Architectural Style @
Goal-Based Control (1 of 2)

* State variables are explicit | Nominal Control + FM
— corresponding to states of the Goal Network

system under control Goal
Executive
* Each goal represents ... / Monitor

— “a goal to be achieved”
— acceptable behavior for a single

state variable Vaﬁ:f)eles
— a required condition
* Each goal has a success ——z Modek N
Estimators J L Controllers

criterion that is...

— specific to that activity Tmeasurements commands
— monitored for success/failure

System Under Control

4/10/2012 Goal-Based Fault Management 8

Architectural Style @
Goal-Based Control (2 of 2)

* A goal may have Nominal Control + FM
supporting goals Goal Network

— To control x, must also control y Goal
Executive
. / Monitor
e Goal failure means that ...

— a behavior is not acceptable

— a required condition no longer State
holds Variables
 Goals are the basis for Models ~
. Estimators J L Controllers
operatmg the system

—not just fault management Tmeasurements commands
but also nominal control

System Under Control

4/10/2012 Goal-Based Fault Management 9

Context-Aware Failure Response @

A command sequence is just a sequence of
commands; it does not represent intent

 When a failure occurs, the most appropriate

response often depends on the context
— onh system state
— on intent

— on models of how things work

* Goal-based operation enables cognizant control
— Fault response decisions are based on context

4/10/2012 Goal-Based Fault Management 10

Goal Hierarchy (Goal Tree, Success Tree) @

 Atop-level goal is elaborated to add all of its supporting goals
* Looking upward explains why a goal exists

* Looking downward explains how it will be achieved and/or what
it requires

* Goal failure response is informed by the next higher goal

A goal on device
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ configuration

Top-level goal » | Maintain Received
Signal

A 4 A
Antenna powered Antenna Electronics Maintain Antenna
and active Package in mode 3 Pointing

A control

.
[10 Watts of power } Electronics package [Maintain Spacecraft }
«4

allocated

is healthy Pointing
g |
iff ﬁf - v - v
A goal for Thrusters Attitude
resource A goal on | healthy knowledge
: hi-precision

allocation device health

4/10/2012

Goal Failure Response Animations

Safing: 0
I

T T T TETT

Safe goal net

Done. Safe goal net installed,
all previous goals removed

&

Partial Goal
Shedding:

Parent goal
decides to |

shed #ﬁﬁée

S TR eyl
?&T‘!ﬁ bbb

Done. Failed goal and its
supporting goals removed.

Re-elab. &
Re-sched.:

Parent goal
decides to_

re-elab. ¢ [J:

7660

&ﬁﬁﬁ%&ﬁ_ﬁ&

Done. Failed goal and its support
removed and replaced by new goals.

Goi
Fail

Best-Effort:

Keep trying
to achieve‘!eé

)
.
*
*

P60
Sb6bbbbbbd
bbb

Done. No change because
nothing better can be done.

.
-
g

.‘.

ol

Fails

4/10/2012

12

Framework vs. Operations Complexity @

High Monitor-
Response-
Inhibit
Architecture
Operations
Complexity Goal-Based
Architecture
Model-Based
Architecture
Simple

Simple High

Framework Complexity

4/10/2012 Goal-Based Fault Management 13

Summary @

» Single control architecture for nominal activities and
fault tolerance (no 2-headed monster)

* All activities represented as goals on state behavior
of system under control (state & intent are explicit)

* (Goals at every level are monitored during execution
 Failure detection, not just fault detection

* A goal-driven control architecture knows what it is
doing, why it is doing it, and can therefore ...

 consider different options for goal achievement
* issue context-aware fault responses

4/10/2012 Goal-Based Fault Management 14

Epilogue @

* Goal-based FM is really goal-based control

— It can be the basis of automated operation for both
nominal and off-nominal, or ...

— it can be an advisory system for humans

* The purpose of this talk was to show a
different point of view on fault management

 There is much more detail about goal-based
control architecture than shown here

4/10/2012 Goal-Based Fault Management 15

For More Information @

 “Goal-Based Fault Tolerance”, Robert Rasmussen, 2001 IEEE
Aerospace Conference, March 2001.

 “GN&C Fault Protection Fundamentals”, Robert Rasmussen, 315t
Annual AAS Guidance and Control Conference, 2/1/2008.

* “Managing Fault Protection Software Complexity for Deep Space
Missions”, Kevin Barltrop, 2009 (in NASA FSW Complexity report).

* NASA Fault Management Handbook, Lorraine Fesq, editor,
1/31/2011, Version 1 (Draft), https://nen.nasa.gov/web/
faultmanagement/handbook-wiki

* NASA Fault Management Community of Practice, Lorraine Fesq,
https://nen.nasa.gov/web/faultmanagement

 “A Reactive Model-based Programming Language for Robotic

Space Explorers”, Michel Ingham, Robert Ragno, Brian Williams, i-
SAIRAS 2001, June 2001.

4/10/2012 Goal-Based Fault Management 16

BACKUP

4/10/2012 Goal-Based Fault Management 17

Presentation Layer
*Operator interface and tools
*Human decisions & planning
*Longest time-scales

Planning Layer

*Deliberative planning

*Long time-scale control loops
*Applies alternate tactics
*Progressive problem escalation

Execution Layer

*Executes plan on intent timeline

*Monitors goal achievement
*Detects control failures

*May handle some contingencies

Control Layer

*Achieves goals

*Highly reactive behavior
*Short time-scale control loops

Architecture

Goal-Based Control Architecture

Control System

Operator Displays
and Controls

status goals

. 'Y

Scheduling |« Goal Elaboration |
9 & Re-elaboration
goal
failures
(State Variables P
#I Intent timeline I > Goal.
: ! Executive
» Knowledge timeline | » & Monitor
\)

intent

A 4 \ 4

Estimators

v Vv
Controllers

A A

measurements

commandsy

1
1
1
|
V
] |
|
1
1
1

Operators are part of the Control
System since they make decisions,

closing the longest control loops

For each goal, its elaborator
produces supporting goals (if any)

State variables have 2 timelines:
intent (populated by goals) and
knowledge (populated by estimates)

Goal achievement status is
monitored during execution
and goal failures trigger
fault recovery

Estimators generate state knowledge
based on available evidence

Controllers issue commands to
System Under Control in attempt
to achieve control goals

System Under Control

Physical States ll E——

System Under Control has physical
states that Control System monitors
and controls via its State Variables

4/10/2012

18

Main Points @

* Fault protection, as typically designed, introduces unnecessary complexity

— Typical design consists of two top-level control mechanisms:
= Open-loop time-based sequence engine for nominal activities

= Closed-loop event-driven fault protection system (sometimes called
“autonomy engine”)

— But they both need the same criteria
(Success = —=Failure and Failure = -Success)

— And nominal activities increasingly need closed-loop control

* Why not handle both kinds of activities within a closed-loop control
paradigm?

* A goal-based control architecture provides a single mechanism for control of
nominal activities and fault responses

— Eliminates coordination between two different mechanisms
— Easier to provide activity-specific fault responses

4/10/2012 Goal-Based Fault Management 19

Reference @
Guidelines for Fault Protection*®

=» 1. Do not separate fault protection from normal 11. Make sure objectives express your full intent.

operation of the same functions. - .
12. Reduce sensitivity to modeling errors.

=p» 2. Strive for function preservation, not just fault

protection 13. Follow the path of least regret.

14. Take the analysis of all contingencies to their logical

3. Test systems, not fault protection; test behavior, i
conclusion.

not reflexes.

4. Review all the data. 15. Nev.er. ynderes’amate the value of operational
flexibility.
5. Cleanly establish a delineation of mainline control

functions from transcendent issues. 16. Allow for all reasonable possibilities — even the

implausible ones.
6. Solve problems locally, if possible; explicitly manage1

broader impacts, if not. 7. Design spacecraft to be safe in safing.

=» 7. Respond to the situation as it is, not as it is hoped 18. Include failsafe hardware features.

to be. 19. Check out safing systems early in flight.
=» 8. Distinguish fault diagnosis from fault response 20. Carefully validate all models.
initiation.
21. Given a choice, design systems that are more easily
9. Use control actions to narrow uncertainty;, if modeled.
possible.

=» 10. Make objectives explicit for everything.

* From GN&C Fault Protection Fundamentals, Robert Rasmussen, 2008.

4/10/2012 Goal-Based Fault Management 20

Architectural Style @
Model-Based Execution
* The “system model” is a connected set of
component models, each one describing

component behavior for nominal and p?‘égtr;",iq [7| Onboard Sequencer
fault modes state T lconfiguration
* The deductive mode estimator compares ee s _ i
observations to model-predicted state. If system || g e
they are inconsistent ... Mode! Reactive Planner
— It deduces the most probable fault mode, or observations T lcommands
— It concludes “unknown system state”
* The reactive planner searches for Flight System Control
alternate ways to achieve the goals | RT Control Layer

* There is very little fault protection code,
per se, because fault detection, diagnosis
and response result from reasoning over
the system model

4/10/2012 Goal-Based Fault Management 21

Example State Effects Diagram

A map of the territory that guides modeling, software, and ops engineering

Legend:
Ant N Ant N
Ant N _ .
Prgﬁle Mechanical Electronics O = state variable
Ant N Power And Package N =
Mechanical — AntN pMode election = measurement
AntN Power Available
Memory Hepgh = command
Health
Combined
AntN AntN AntN AntN AntN Signal G/T
.. . Mechanical . .
Pointing Mechanical ———» Power And Electronics Electronics
Profile Health OpMode Package Health
Ant N Combined
Encoder Signal_M
Health
Ant N _ Ant N
.. » Rcvd
Pointing .
Signal M Received
A Signal G/T
|
1
1
|
1
Backg.round . Array
Ant N Ant N Noise . «— Correlator Array
AzEl Error ! Array Combiner Correlator
: Slgnals Power
, Weights
1
|
1
Electronics !
Noise ! Correlating
I Matrix
1
1
! Allocate Resources Include Received
PA.m .N For Combined Signal N in
ointing Clock AntN Environment Target X Target X Signal Correlation
Sensor State Deformation Location Signal
Health Y Y

4/10/2012

Comparison of FM Architectural Styles (1 of4)®/

Monitor-Response-

Inhibit Style

Goal-Based Execution Model-Based
Style Reasoning Style

Detection Monitors for specific faults All activity failures detected Detects inconsistencies
with fixed alarm limits. No based on acceptable between observables and
activity monitoring. behavior, which is context model predictions

sensitive

Diagnosis A detected fault gives a Localized to unhealthy Localized to most
clue component or failed activity probable cause, even

multiple faults

Response Fault x triggers Response 'y, Localized context-sensitive Searches for a new
and may also set or reset response configuration that can
an inhibit. Not context achieve the failed activity
sensitive

Safe mode Common response w/ Last resort in escalation Last resort if no other
human intervention chain suitable reconfiguration

Graceful No, because control system Yes. Unaffected activities Yes. Unaffected activities

Degradation has no cognizance of what continue while system continue while system
depends on what responds to goal failures. responds to goal failures.

4/10/2012 Goal-Based Fault Management 23

Comparison of FM Architectural Styles (2 of4)®/

Monitor-Response-

Coverage

Relation to
nominal
control

Framework
Complexity

Operational
Complexity

Application
Complexity

Inhibit Style

Limited to a laundry list of
faults. No detection of
activity failures.

Typically an add-on that
can take over control
from nominal execution

Simple

High. Often needs human
intervention (safe-mode
recovery)

High. Historically time-
consuming integration
and V&V.

Goal-Based Execution Model-Based Reasoning
Style Style

Detects all activity failures,
even if all components
‘healthy’

Same mechanism. Activities
always monitored for
failure.

Moderate. Requires goal
failure response framework

Low-Medium. May need
human involvement in
some diagnoses.

Moderate complexity in
conditional elaborators

Detects all discrepancies
between observations and
predictions

Same mechanism. Engine
always looks for most
probable states consistent
with observations

Requires general-purpose
inference engine (strong
theory, but non-trivial)

Low. Diagnosis and recovery
based on sound reasoning.

Simple declarative models of
component behavior for
nominal and fault modes

4/10/2012

Goal-Based Fault Management

24

Comparison of FM Architectural Styles (3 of4)®

Monitor-Response-
Inhibit Style

Maturity TRL 9. Flown on many
missions, humerous
variations on this style.

Challenges * FM behavior hard to

predict because fault
monitor thresholds
and timers adjusted
not only for detection
but also response
ordering

* Danger of leaving an
inhibit in wrong state

* Poor (behavior is hard
to predict).

* Models are implicit in
the code, not explicit

Inspectability /
Understandability

Goal-Based Model-Based
Execution Style Reasoning Style

TRL 5-6. Demonstrated
in flight-like analog
mission environment,

and partly integrated
with flight-like h/w.

* Hand-coded goal
elaboration logic is
guided by model but
subject to human
error

Good (explicit state
effects model guides all
goal elaborations)

TRL 6-7. Flown on DS-1 as

an experiment.

* Consumes more CPU
cycles

* Framework software is
complex

* Limited to discrete states
and discretized versions
of continuous states

Best (propositional
models of component
behavior easy to inspect
and understand)

4/10/2012

Goal-Based Fault Management

25

Comparison of FM Architectural Styles (4 of 4)@

Monitor-Response- Goal-Based Execution | Model-Based
Inhibit Style Style Reasoning Style

Overall Summary: Summary: Summary:
Assessment * Simple framework * Graceful degradation * Graceful degradation
* No graceful degradation < Activity monitoring * Model-based diagnosis is
* No activity monitoring * Moderate framework highly disciplined
* Limited to anticipated complexity * Best at handling
fault modes * Same mechanism for cumulative failures
* Behavior hard to predict = nominal and fault * Same mechanism for
in untested scenarios execution nominal and fault
execution

4/10/2012 Goal-Based Fault Management 26

Architecture
Commands vs. Goals @

Commands

Directs momentary changes of state

« Examples: open a valve; select an antenna;
set a mode...

« Many commands are open-loop
« Typically depend only on intrinsic state
stability

— Persistence of effects is assumed, not
enforced

— Failure to effect or sustain a change
may go unnoticed until subsequent
dangers trigger a fault response

Goals

Specifies objectives on state, a.k.a. closed-
loop commands

« Common in most space systems, but not
the norm

— Examples: Track the earth; obtain a
picture; drill a hole...

+ Subsequent action monitors and sustains
the objective

— Playing out over time is a defining
characteristic

— Failure to achieve an objective is overt
and recognized early

* More general representation
— Can mimic any open-loop command

— No hidden assumptions, so easier to
construct, schedule, and verify

« Can specify passively achieved behavior

— Flight rules and constraints, resource
management, fault monitoring use same

representation

4/10/2012

