A Proposal on
Exploration Test Module

Nov. 15, 2011

Naoki Sato
JAXA Space Exploration Center
(JSPEC)
Presentation Outline

① Candidates for Design Reference Mission
② Key Technology Identification for DRMs
③ A proposed methodology for ETM Concept Development
④ Possible ETM Configurations and scenario
Candidates for Design Reference Mission (DRM)

- Candidate DRM identified by Asteroid Next
 - Cis-Lunar Servicing and Deployment
 - Crew visits to DSH increase duration
 - Human Mission to NEA (#1, #2)
 - First and Second crewed mission to NEAs

- Candidate DRM identified by Moon Next
 - Lunar Cargo Landing
 - Human Lunar Orbit
 - Human Lunar Landing
Elements Appeared in DRMs

<table>
<thead>
<tr>
<th>Elements</th>
<th>Required Servicing</th>
<th>Cis-lunar Servicing</th>
<th>Human NEA</th>
<th>Lunar Cargo</th>
<th>Human Lunar Orbit</th>
<th>Human Lunar Landing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch Vehicle</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPCV</td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPS</td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced In-space Propulsion</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSH</td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination System</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descent & Ascent Stage</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface System</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servicing Support System</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Technologies Necessary for DRMs

<table>
<thead>
<tr>
<th>Title</th>
<th>Cis-lunar Servicing</th>
<th>Human NEA</th>
<th>Lunar Cargo</th>
<th>Human Lunar Orbit</th>
<th>Human Lunar Landing</th>
<th>Key Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA01 Launch Propulsion Systems</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>• Heavy Lift Capability</td>
</tr>
<tr>
<td>TA02 In-Space Propulsion Technologies</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>• Cryo Propulsion</td>
</tr>
<tr>
<td>TA03 Space Power and Energy Storage</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>• Large Electric Propulsion</td>
</tr>
<tr>
<td>TA04 Robotics, Tele-Robotics and Autonomous Systems</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>• Advanced Robotics</td>
</tr>
<tr>
<td>TA05 Communication and Navigation</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>• Autonomous Crew Ops</td>
</tr>
<tr>
<td>TA06 Human Health, Life Support and Habitation Systems</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>• Advanced ECLSS</td>
</tr>
<tr>
<td>TA07 Human Exploration Destination Systems</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>• Surf. Mobility</td>
</tr>
<tr>
<td>TA08 Science Instruments, Observatories and Sensor Systems</td>
<td>✓✓</td>
<td>✓✓</td>
<td>✓</td>
<td>✓</td>
<td>✓✓</td>
<td>• Fly Around</td>
</tr>
<tr>
<td>TA09 Entry, Descent and Landing Systems</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>• EVA Suits</td>
</tr>
<tr>
<td>TA10 Nanotechnology</td>
<td>✓✓</td>
<td>✓✓</td>
<td>✓</td>
<td>✓</td>
<td>✓✓</td>
<td>• High-Speed Re-entry</td>
</tr>
<tr>
<td>TA11 Modeling, Simulation, Information Technology and Processing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>• Moon Pin Landing & Ascent</td>
</tr>
<tr>
<td>TA12 Materials, Structures, Mechanical Systems and Manufacturing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>• Radiation & M/M Protection</td>
</tr>
<tr>
<td>TA13 Ground and Launch Systems Processing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>• Light-weight Structure</td>
</tr>
<tr>
<td>TA14 Thermal Management Systems</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>• Heat Protection</td>
</tr>
</tbody>
</table>

Note: The table indicates the technologies necessary for different scenarios and applications in DRMs.
Location Candidates for Technology Demonstration

- The most of the key technologies to implement the DRMs should be demonstrated before the actual use of the human flight and operation.
- The candidates locations of the technology demonstration are identified as follows.
 - Ground Testbed (Analog Sites on the earth, etc.)
 - ISS (International Space Station)
 - Robotic Precursor to Moon
 - Robotic Precursor to Asteroid
 - ETM (Exploration Test Module)
Exploration Test Module in GER Mission Scenario

Missions and Destinations
- Low Earth Orbit:
 - ISS Operations
 - Step 1: Exploration Test Module
 - Step 2: Crewed flights to Exploration Test Module

Key Enabling Capabilities
- Commercial Crew
- Commercial Cargo
- Servicing & Support Systems
- NGSLV
- MPCV
- SLS/Heavy Launch Vehicle
- Deep Space Habitat
- Cryogenic Propulsion Stage
- Advanced In-Space Propulsion

Timeline
- 2011: ISS Operations
- 2012: Step 1: Exploration Test Module
- 2013: Step 2: Crewed flights to Exploration Test Module
- 2014: Future Human Mission Moon
- 2015: Robotic Exploration
- 2016: Future Human Mission Mars System
- 2017: Robotic Exploration
- 2018: Future Human Mission
- 2019: ~
- 2020: ~
- 2021: ~
- 2022: ~
- 2023: ~
- 2024: ~
- 2025: ~
- 2026: ~
- 2027: ~
- 2028: ~
- 2029: ~
- 2030: ~
- 2031: ~
- 2032: ~
- 2033: ~
Proposed Concept of ETM

- ETM demonstration should be the integrated mission
 - Demonstrate the total risk reduction for future human mission

- Utilize ISS capabilities
 - Assembly, Test, and Reconfiguration/Reutilization of Modules/Equipments/Parts

- Demonstrate technologies which need different orbital conditions from ISS
 - Radiation and Micro-meteorite environment, external thermal conditions, etc.
 - Rendezvous and docking in deep space environment (w/o GPS, etc)
 - Thermal Management (w/o earth albedo and ISS)

- Demonstrate technologies that are difficult to be demonstrated at ISS or ground
 - Propulsion technologies
 - Entry, Descent and Landing

- Demonstrate technologies which need large scale model and not optimal for robotics precursor
Appropriate Location for Key Technology Demo

<table>
<thead>
<tr>
<th>Title</th>
<th>Key Technology</th>
<th>Ground Testbed</th>
<th>ISS</th>
<th>Robotics Moon</th>
<th>Robotics NEA</th>
<th>ETM Min</th>
<th>ETM Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA01 Launch Propulsion Systems</td>
<td>• Heavy Lift Capability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA02 In-Space Propulsion Technologies</td>
<td>• Cryo Propulsion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA03 Space Power and Energy Storage</td>
<td>• Lightweight Large Solar Cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA04 Robotics, Tele-Robotics and Autonomous Systems</td>
<td>• Advanced Robotics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA05 Communication and Navigation</td>
<td>• Comm & Nav in Deep Space</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA06 Human Health, Life Support and Habitation Systems</td>
<td>• Advanced ECLSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA07 Human Exploration Destination Systems</td>
<td>• Surf. Mobility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA08 Science Instruments, Observatories and Sensor Systems</td>
<td>• High-Speed Re-entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA09 Entry, Descent and Landing Systems</td>
<td>• Moon Pin Landing & Ascent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA10 Nanotechnology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA11 Modeling, Simulation, Information Technology and Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA12 Materials, Structures, Mechanical Systems and Manufacturing</td>
<td>• Radiation & M/M Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA13 Ground and Launch Systems Processing</td>
<td>• Light-weight Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA14 Thermal Management Systems</td>
<td>• Heat Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Possible ETM Configuration and Scenario (ETM Min)

Demonstrated Technology

- Large electric propulsion
- Cryo propulsion in space
- Lightweight solar cell

Habitable module with
- Radiation Protection
- Rendezvous/Docking equipment
- M/M protection
- Thermal Radiator

High-Speed Reentry & Heat Protection

Con. & Nav. in deep space

Docking in deep space

Large heat radiation

EML

@ISS Docking demo Assembly Check out

Heavy lift capability
Possible ETM Configuration and Scenario (ETM Max)

- Large electric propulsion
- Cryo propulsion
- Demonstrated Technology
- Human Tended Module
- Habitabile module with
 - Radiation Protection
 - Rendezvous/Docking equipment
 - M/M protection
 - Thermal Radiator
 - Inflatable Structure
 - Advanced ECLSS
 - Fly around robots
- Docking in deep space
- Con. & Nav. in deep space
- Heavy lift capability
- @ISS Docking demo Assembly Check out
- High-Speed Reentry & Heat Protection
- Fly around robots
- M/M protection
- Inflatable Structure
- Advanced ECLSS

Radiation , M/M Protection & Advanced ECLSS
Light weight solar cell
Cryo propulsion in space
Large heat radiation
Docking in deep space
Con. & Nav. in deep space
EML

SEP
CPS
HTM

Large heat radiation

Radiation , M/M Protection & Advanced ECLSS
Light weight solar cell
Cryo propulsion in space
Docking in deep space

EML

Fly around

SEP
CPS
HTM
Conclusions

- Proposed a methodology for developing concepts of ETM which will demonstrate the key technologies for human exploration.

- Notional ETM based on the methodology and scenario were also proposed for further consideration.

- ETM should be optimized considering budgetary constraints, and also should be which various International Partners can participate in.