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Preface 

The "Flight Testing Newton’s Laws" NASA Education Series uses aircraft to stimulate the 
student’s interest in the physical sciences and mathematics. The main emphasis lies in showing how 
Newton’s three laws of motion apply to flight testing an aircraft. However, complementary areas of 
trigonometry, vector addition, weight and balance, along with resolution of forces are also employed. 
Following a brief review in the first video of Newton’s Three Laws and the four basic forces of flight, the 
presentation follows the typical sequence employed by test pilots and engineers preparing for a test flight. 
Aircraft weight and balance, determining takeoff distance, cruise performance, and landing distance are 
addressed in turn. 

Each lesson guide is presented in the format of a Flight Instructor’s Manual used by aircraft 
manufactures and pilots. This Manual contains certain areas where the teacher should direct the student’s 
attention. Each of these areas are identified by their relative importance according to the following criteria: 

NOTE:	 Sidelight information which may add to ensuing discussions but which is not considered 
essential to the material content. 

Warning: This block will identify background information the student should already possess. 
Knowledge of identified concepts is essential to understanding the material being 
presented. The material is not given during this session but is identified to the instructor 
in order to permit discussion of the material prior to undertaking the current lesson. 

By way of example, consider the following: 

NOTE:	 In an actual Pilot’s Flight Manual, the Notes, Cautions, and Warnings are defined as 
follows: 

NOTE: 	 An operating procedures, techniques, etc., which is considered essential to 
emphasize. 

Warning: Operating procedures, techniques, etc., which could  result in personal 
injury or loss of life if not carefully followed. 

Often information that is not critical to flight safety, but which enhances the pilot’s understanding, 
is provided in the form of an Operational Supplement. Throughout this manual, Operational Supplements 
are provided at the end of the session to enhance the understanding of the material. When appropriate, a 
note is added to direct the reader's attention to the end of session Operational Supplement. 

All units in the Flight Instructor’s Manual are presented in the English system. The rationale 
behind this is twofold. First, engineers and pilots in the United States still use the English system 

Caution: Should the student fail to consider a particular aspect of the topic of discussion, the
result may be the wrong answer to the example problem. 

Caution: Operating procedures, techniques, etc., which could  result in damage to
equipment if not carefully followed. 
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exclusively. All cockpits have instrumentation measured in feet, statue or nautical miles per hour, pounds 
per square inch, and foot-pounds. Second, it is felt that if so desired, by converting the example problems 
into the metric system, the student will develop a feel for the relative magnitudes of units between the two 
systems. The accompanying text often presents both sets of units in its examples and explanations. 

Occasionally, the teacher may want to stop the video to reinforce or clarify subjects being 
presented. Throughout this guide, there will be areas annotated by **STOP VIDEO** where clarification 
may be appropriate. In addition, where definitions are presented at the beginning of the session, it may be 
advantageous to review the definitions before showing the video. The recommended areas to start the 
video are annotated with **START VIDEO**. All material presented prior to the **START VIDEO** 
symbol should be covered before hand. 

The National Aeronautics and Space Administration's Education Division supports the National 
Education Standards. The activities in Flight Testing Newton's Laws were developed in accordance with 
the National Education Standards and satisfy the content requirements for science and mathematics 
specified below: 

National Science Education Standards 

Physical Science 

Motions and Forces: 

•	 Objects change their motion only when a net force is applied. Laws of motion are used to calculate 
precisely the effects of forces on the motion of objects. The magnitude of the change in motion can 
be calculated using the relationship F = ma, which is independent of the nature of the force. 
Whenever one object exerts force on another, a force equal in magnitude and opposite in direction 
is exerted on the first object. 

•	 Gravitation is a universal force that each mass exerts on any other mass. The strength of the 
gravitation attractive force between two masses is proportional to the masses and inversely 
proportional to the square of the distance between them. 

Curriculum Standards for School Mathematics  

Mathematics as Problem Solving 

•	 Use, with increasing confidence, problem-solving approaches to investigate and understand 
mathematical content. 

•	 Apply integrated mathematical problem-solving strategies to solve problems from within and 
outside mathematics. 

Mathematics as Communication 

•	 Reflect upon and clarify their thinking about mathematical ideas and relationships 
•	 Read written presentations of mathematics with understanding 

Mathematics as Reasoning 

• Make and test conjectures 
Mathematical Connections 

•	 Relate procedures in one representation to procedures in an equivalent representation 

ii 



  

•	 Use and value the connections between mathematical and other disciplines 

Algebra 

•	 Represent situations that involve variable quantities with expressions, equations, inequalities, and 
matrices; 

•	 Operate on expressions and matrices, and solve equations and inequalities; 
•	 Appreciate the power of mathematical abstraction and symbolism; 
•	 Demonstrate technical facility with algebraic transformations, including techniques based on the 

theory of equations. 

Functions 

•	 Model real-world phenomena with a variety of functions. 

Trigonometry 

•	 Explore periodic real-world phenomena using the sine and cosine functions; 
•	 Solve trigonometric equations and verify trigonometric identities 

References 
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It is our intent that through the use of videos and Flight Manuals, the thrill of aviation can be 
enjoyed by both the student and the teacher. 
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Session 1
 
Review of Newton's Laws of Motion
 

1.0 Importance of Physics NOTE: 
The following types of aircraft are shown in

the first video:
Testing airplanes requires pilots to know a lot 

more than just how to fly the plane; they must also 
know why an airplane flies. The science of flight is 
totally dependent upon physics. In fact, without a 
good understanding of physics, Orville and Wilbur
 
Wright would never have gotten their Flyer off the
 
ground.
 

SAAB Draken 
(supersonic fighter)
 

Wright Flyer 

Many "would-be" aircraft designers never took 
the time to study Newton’s Laws, and as a result, 
built contraptions that flew worse than they looked. 

Aeromacchi Impala 
(jet trainer) 

Sikorsky S-55 
(transport helicopter) 

"Would-Be" Design 

Newton’s Laws of Physics are still applied by 
aircraft designers every day for every type of 
aircraft. Using these laws, designers are able to 
determine such things as the overall shape of the 
aircraft, how many engines are required, how far it 
can go, and how much runway is needed to takeoff 
and land. All these areas must be addressed for the 
design to be successful. 

In order to make effective use of Newton’s Laws, a 
brief review of each is in order. 

Warning: 

The assumption is made that the students have 
already been taught the development of Newton’s 
Laws. The following presentations are meant to 
serve only as a refresher. Sections 5.1 through 5.4 
of the accompanying text should be reviewed prior 
to starting the video. 

1.1
 



 

 

  

 

Session 1
 
Review of Newton's Laws of Motion
 

**START VIDEO**
 

2.0 Newton’s First Law 

The First Law of Motion is often referred to as 
the Law of Inertia. The formal definition states: 

"A body in motion at a uniform speed 
will remain in motion at that speed unless 
acted upon by an external force, and a 
body at rest will remain at rest unless 
acted upon by an external force." 

NOTE: 

See the Operational Supplement at the end of this 
session for a description of speed and velocity. 

A body in motion is exactly what seatbelts are 
designed to restrain. Seatbelts are known to save 
lives by preventing the vehicle occupant from 
continuing forward when the vehicle stops 
suddenly. The tendency for the occupant to 
continue forward is a classic case of inertia at 
work. The "external force" which acts upon the 
body comes in the form of the seatbelt. 

Sled Track Test Subject 

Each belt must be made of the proper material 
and to the correct size to provide enough external 
force to limit the pilot’s movement. Determining 
the size of forces is the topic of Newton’s Second 
Law. 

NOTE: 

The rapid deceleration rate caused Col.  Stapp’s 
eyes to hemorrhage, giving him two completely red 
eyes. 

Seatbelts at Work 

For the speeds experienced in a car, the 
seatbelts/shoulder strap combination should 
provide sufficient stopping force for the occupant. 
However, since aircraft travel at much faster 
speeds and are free to move in three dimensions, a 
"five point" harness is often used; 2 shoulder 
straps, a right and left seatbelt, and a "negative-g" 
strap between the legs. The effectiveness of this 
arrangement can be seen on the sled track 
occupant. 

3.0 Newton’s Second Law 

Newton’s Second Law of Motion relates force 
to acceleration. The formal definition is: 

"Force is equal to mass times acceleration,
 or F = ma." 

NOTE: 

See the Operational Supplement at the end of this 
session for discussion of acceleration. 

An everyday example of this law occurs when we 
step on the scale to weigh ourselves. 

1.2
 



 

 

 

 

  

Session 1
 
Review of Newton's Laws of Motion
 

Second Law at Work

 The force can be measured directly as our 
weight, refered to as  Fw.  Additionally, on Earth, 
the acceleration of gravity is found to be 32.2 
ft/sec2.  Substitution into the 

F = ma, 

equation and rearranging where a = g  
Fw
g m = 

this equation yields our mass. 

NOTE: 

The development of the universal gravitational 
constant is contained in the Operational 
Supplement. 

The significance of knowing our mass comes to 
light when we are not subjected to the Earth’s 
gravity. A man standing on the Earth has the same 
mass as he would standing on the moon. However 
on the moon he would weigh 1/6th of what he 
would weigh on the Earth. The difference in his 
weight comes from the differences in the 
gravitational acceleration constants between the 
Earth and the moon. The moon’s gravitational 
acceleration is only 1/6th that of the Earth’s. As a 
result, his weight is only 1/6th of his Earthly 
weight. In aviation, the Earth’s gravitational 
acceleration is referred to as a "g."  Often times a 
pilot may feel the effect of more (or less) than 1 
"g." 

As an aircraft maneuvers, the pilot experiences 
a change in the "g-factor."  This factor is multiplied 

times the standard gravitational acceleration of 
32.2 ft/sec2.  A mathematical expression of this 
would look like 

F = ma 

Fw = mg ("g" factor)

 Caution: 

The "g" factor is actually a result of centripetal 
acceleration. The equation for this is 

mV 2 

R F = 

However, for this application the "g" factor can be 
envisioned as simply a multiplication factor. 

Example:  The pilot in the video weighs 155 
pounds. To determine his mass, 

NOTE: 

Descriptions of this and other acceleration factors 
are contained in the Operational Supplement. 

Fw = mg 
155 lbs = m (32.2 ft/sec2) 

therefore 
m = Fw 

g = 155 lbs/32.2 ft/sec2 

or 
m = 4.8 slugs 

**STOP VIDEO after pilot talks about slugs** 

NOTE: 

The use of slugs as a unit of measurement may be 
foreign to some students. See page 4.2 of the text 
for a complete definition of a slug and its 
equivalent in the metric system. 

During a "2-g" turn, the pilot’s weight can be 
found by: 

Fw = mg("g" factor) 

Fw = (4.8 slugs) (32.2 feet/sec2) (2) 
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Fw = 309 pounds 

NOTE: 

The mass actually comes out to 4.8137 slugs. Due 
to round-off error, the 2g turn results in 309 lbs 
instead of the more exact 310 lbs. 

**START VIDEO** 

From this example, it can be seen that a "g" 
factor is purely a multiplication factor used to 
determine an increase in weight. Since this 
increase in weight acts towards the pilot’s feet, the 
force may cause the blood to leave his upper body 
causing him to black out. As a result, he wears an 
"anti-g" suit to provide an opposing force on his 
legs keeping the blood in his head and chest. 
Opposing forces is the subject of Newton’ third 
law. 

4.0 Newton’s Third Law 

The third law of motion is often thought of as 
the law of action and reaction. Specifically it states 

"When one object exerts a force on 
another, the second object must exert an 
equal and opposite force on the first." 

violate the third law, therefore thrust must be 
opposed by an equal and opposite force. This 
second force is called drag. Drag is the resistance 
of the atmosphere to the aircraft, like you feel when 
you put your hand out the window of a moving car. 
When drag and thrust are equal, the aircraft is no 
longer accelerating, but remains at the same speed 
since these forces are equal.  If thrust is increased 
by adding more power, the aircraft will initially 
accelerate to a new speed. However as the plane's 
speed increases, so does the drag and eventually, 
thrust and drag will again be equal, but at a faster 
speed. 

The remaining two forces on the aircraft 
highlight how a plane stays in the air. Lift is the 
force provided by the wings as the plane moves 
forward through the air. If lift is the force which 
causes a plane to rise, then it seems logical the 
opposing force would act in a downward direction. 
Not surprisingly, this force is the plane's weight. 
Now it may seem strange, but lift is always equal 
to weight, otherwise the aircraft couldn't stay in the 
air. 

The aircraft is controlled by changing the lift 
forces over the wings and tail. Moving the control 
stick forward or backward causes more or less lift 
on the tail causing the nose to move up or down. 
Likewise moving the stick from side to side causes 
more lift on one wing, which results in a roll. 

The simplest example of this is when we stand 
from sitting in a chair. We place our feet on the 
floor, use our legs to push against the floor, and 
push ourselves up. If the earth, or floor, didn't push 
back with an equal amount of force, we would fall 
into the earth (earth pushing back with less force) 
or we would be propelled into the air (earth 
pushing back with more force). The same principle 
applies to a jet engine. Thrust is the force 
produced by the hot gas coming out the back of the 
engine. Since Newton's third law must also be 
obeyed here, the air exerts a force equal to the 
thrust but in the opposite direction, propelling the 
jet forward in the same manner as the floor 
exerting a force on your legs allows you to stand. 

Thrust is just one  of four primary forces which 
act upon an aircraft in flight. The plane can't 

Forces in Flight 

All four of these forces are actually dependent 
upon each other and in a future session, their 
interrelationships will be explored. 
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5.0 	Summary 

Newton's three laws were highlighted here to 
provide the student with an exposure into only a 
few areas where the laws come into play in 
aviation. The pilot's restraint system reviewed the 
principle of inertia, the "g" factors emphasized the 
change in force with a change in acceleration, while 
the jet engine and the forces of flight showed the 
concept of action and reaction. All of these laws 
can be demonstrated in the following example. 

6.0  Measures of Performance 

1 What does Newton's first law state? 

ANSWER 
"A body in motion at a uniform speed will 
remain in motion at that speed unless acted 
upon by an external force, and a body at rest 
will remain at rest unless acted upon by an 
external force." 

2 What does Newton's second law state? 

ANSWER 
"Force is equal to mass times acceleration, or 
F = ma." 

3 What does Newton's third law state? 

ANSWER 
"When one object exerts a force on another, the 
second object must exert an equal and opposite 
force on the first." 

4 What is a "g"? 

ANSWER 
In aviation, the earth's gravational acceleration 
is referred to as a "g". 

5 What is a "g" factor? 

ANSWER 
The "g" factor is actually a result of centripetal 
acceleration. 

7.0  	Example 

Problem: 
The pilot in the video said he weighs 155 pounds. 

The restraint system in the aircraft consists of five 
seatbelts (two shoulder belts, two lap belts and one 
negative "g" belt). How much force does each belt 
have to withstand to keep him from hitting the 
instrument panel if he experiences a positive "g" 
factor of +12 when the plane comes to a rapid stop 
during a crash landing? 

Solution: 
1. 	 The pilot's mass is found by use of the second 

law: 
F = ma 

On Earth, one "g" is the acceleration of gravity 
(32.2 ft/sec2) and the force is equal to his 
weight. Therefore, this mass is 

w = mg
 

155 pounds = m (32.2 feet/sec2)
 
m = 4.8 slugs
 

2.	 Again using the second law, at a "g" factor of 
+12, the force is now 

w = mg ("g" factor)
 
w  = (4.8 slugs)(32.2  feet/sec2)(12)
 

w = 1855.7 pounds
 

3.	 This total force can be divided among the seat 
belts.

 Caution: 

One of the seatbelts is a "negative g" belt. Since the 
question states a "positive g-factor of 12" this belt 
should not be included in the calculations.

 1855.7 pounds / 4 belts = 463.7 pounds per belt 
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4.	 Therefore each belt must be designed to be able 
to provide an opposing force of 463.7 pounds 
to contain the pilot's inertia. 

NOTE: 

The "negative g" belt only provides an anchor point 
for the lap belt and shoulder belt. This anchor 
prevents the belts form slackening during negative 
g maneuvers. 

8.0 	Suggested Activities 

1	 Have each student weigh themselves and 
determine their mass from the relationship 

Fw = mg 
Fw
g m = 

2	 Have each student determine how much they 
would weigh during a 2g, 4g and 9g turn. 
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Operational Supplement 

Speed and Velocity 

The simplest kind of motion that an object can have is a uniform motion in a straight line. This 
means an object moving in this manner is moving with a constant velocity.  Constant velocity implies not 
only constant speed, but, unchanging direction as well. For this reason velocity is a vector quantity. 

The speed of a moving body is the distance it moves per unit time in any arbitrary direction. If the 
speed is uniform, the object moves an equal distance in each successive unit of time. Speed is a scalar 
measurement since the direction of motion is immaterial. Whether or not the speed is constant, the average 
speed is the distance the body moves divided by the time required for the motion: 

s2 - s1 = t2 - t1 
Ds
Dt Vavg = (1)

where Ds is the distance traveled, Vavg is the average speed, and Dt is the elasped time.  The British system 
unit of speed is the foot per second (ft/sec); the SI unit is the meter per second (m/sec); many other units 
are common, such as the mile per hour (mi/hr), centimeter per second (cm/sec), knot (kts), etc. 

The terminology used above is very important. The concept of speed does not involve the idea of 
direction. A body moving with constant speed may move in a straight line or in a circle or in any one of an 
infinite variety of paths so long as the distance moved in any unit of time is the same as that moved in any 
other equal unit of time. The concept of velocity includes the idea of direction as well as magnitude. 
Hence we must consider the displacement of a body and not merely the distance traveled. The definition of 
average velocity, then, is given by: 

s2 - s1 DsVavg = = (2)t2 - t1 Dt 

The defining equation for average velocity (Equation 2) is different from the equation for average speed 
(Equation 1) in that v and s are vector quantities. The bar over the symbol is used to emphasize this fact. 
Constant velocity is a particular case of constant speed. Not only does the distance traveled in unit time 
remain the same, but, the direction is unchanged as well. 

Accelerated Motion 
Objects seldom move with constant velocity. In almost all cases, the velocity of an object is 

continually changing in magnitude or in direction or both. Motion in which the velocity is changing is 
called accelerated motion, and the rate at which the velocity changes is called the acceleration.  The 
velocity of a body may be changed by changing the speed, by changing the direction, or by changing both 
speed and direction. If the direction of the acceleration is parallel to the direction of motion, only the speed 
changes, while, if the acceleration is at right angles to the direction of motion, only the direction changes. 
Acceleration in any other direction produces changes in both speed and direction. For the present, we will 
confine our attention to the simplest type of accelerated motion, called uniformly accelerated motion. In 
this case the direction is always the same and only the speed changes at a constant rate in the direction of 
the original motion. The acceleration in this case is equal to the rate of change of speed, since there is no 
change in direction. The acceleration is positive if the speed is increasing, negative if the speed is 
decreasing. Negative acceleration is sometimes called deceleration. 
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The acceleration of a body is defined as the time rate of change of velocity. Using algebraic symbols to 
represent average acceleration, the defining equation is written: 

Vf - Vi DVaavg = = (3)t Dt 

where aavg represents the average acceleration, Vf the final velocity, Vi the initial velocity, and t the elapsed 
time. Since units of acceleration are obtained by dividing a unit of velocity by a unit of time, it may be 
seen that the British unit of acceleration is the foot per second per second  (ft/sec2) and the SI unit is the 
meter per second per second (m/sec2). 

Uniformly Accelerated Motion 
Because they are often encountered, it is convenient to remember and list the equations for the 

special cases which apply to a body moving with constant acceleration in a straight line. If both sides of 
Equation 3 are multiplied by t, we obtain: 

Vf - Vi = at (4) 

which expresses the fact that the change in speed is equal to the rate of change in speed multiplied by the 
time during which it is changing. The distance traveled during any time is gotten by multiplying Equation 1 
by t: 

s  =  Vavgt (5) 

But, the average speed Vavg must be obtained from the initial and final speeds Vi and Vf.  Since the speed 
changes at a uniform rate, the average speed is equal to the average of the initial and final speeds: 

Vi + VfVavg = (6)2 

By combining these equations, two other useful equations can be obtained. Eliminating Vf and Vavg, we 
obtain: 

s = Vit + 2
1 at2 (7) 

If we eliminate Vavg and t, we obtain: 
Vf 

2 = V2 
i + 2as (8) 

Of these five equations, Equation 5 is true for all types of motion; the remaining four equations hold only 
for uniformly accelerated linear motion. 

Universal Gravitation 
In addition to the three laws of motion, Newton formulated a law of great importance in mechanics, 

the law of universal gravitation. Every particle in the universe attracts every other particle with a force 
that is directly proportional to the product of the masses of the two particles and inversely proportional 
to the square of the distance between them.  This relation may be expressed symbolically by the equation: 

Gm1mF = 2
s2 (9)

where F is the force of attraction, m1 and m2 are the respective masses of the two particles, s is the distance 
between them, and G is a constant called the gravitational constant.  The value of G depends on the 
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system of units used in Equation 4. If the force is expressed in newtons, mass in kilograms, and distance in 
meters, G has the value 6.67 × 10- 11m3/kg- sec2.  If the force is expressed in pounds, mass in slugs, and 
distance in feet, G has the value 3.42  × 10- 8ft4/lb- sec4. 

Newton checked his law of gravitation by calculation and observation of the orbit of the moon. 
With the approximate data at his disposal, he still found reasonable agreement between his computations 
and his observations. Careful subsequent experimentation and measurement of the force of attraction 
between small bodies in the laboratory has further established the validity of the law of universal 
gravitation and led to the determination of the value of G given above. 

Uniform Circular Motion 
In uniform circular motion, the velocity vector remains constant in magnitude while the direction 

continually changes. Just as a force is required to change the speed of an object, so a force must also act to 
cause a change in the direction of the motion. Whenever the net force on a body acts in a direction other 
than the original direction of motion, it changes the direction of the motion. Such acceleration is very 
common, for it is present whenever a car turns a corner, an airplane changes its direction, or in any other 
similar motions. 

Central Acceleration 
When an object is moving in a circular path with constant speed, its velocity is continually 

changing. The acceleration produces a change in direction but no change in speed. Therefore, the 
acceleration must always be at right angles to the motion, since any component in the direction of the 
motion would produce a change in speed. The acceleration is always directed toward the center of the 
circle in which the body moves. It is constant in magnitude but contiually changing direction.  In Figure 1 
a body is moving with uniform speed, v, and constant angular speed, w, in a circular path.  The linear speed 
and angular speed are related by the equation: 

V = wr (10) 

Figure 1  Uniform Circular Motion 

where r is the radius of the circular path. The velocities of the object at points A and B are, respectively, V 
and V + DV , equal in magnitude, but, differing in direction by a small angle Dq.  In the vector triangle, DV 
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represents the change in velocity in the time Dt required for the object to to move from A to B. If the angle 
Dq is small, the chord is approximately equal to the arc, and thus: 

DV = VDq (11) 

But, since: 
Dq = wDt (12) 

Hence: 

= V DV = 
2 

VzDt z2rDt = r Dt (13) 
and: 

DV = V 2 
z2r = r (14) Dt 

As Dt is made smaller, the approximation in this equation becomes less and less, and the direction of Dv 
becomes more nearly perpendicular to that of V. As Dt approaches zero, the instantaneous acceleration is 
found to be directed toward the center of the circle and is given by: 

= dV V 2 
ac = z2r = r (15) dt 

This equation states that the acceleration increases as the speed is increased and, for a given speed, is 
greater for a shorter radius. The acceleration is at right angles to the velocity and hence is directed toward 
the center of the circle. If the angular speed in Equation 15 is expressed in radians per second, then the 
units of ac then depend upon the units in which r and V are expressed in. If the units of r are in feet and V 
in feet per second, then the units of ac are in ft/sec2 . If the units of r are in meters and V in meters per 
second, then the units of ac are in m/sec2. 

Centripetal Force 
According to Newton's laws of motion, any object that experiences an acceleration is acted upon 

by an unbalanced force, a force that is proportional to the acceleration and in the direction of the 
acceleration. The net force that produces the central acceleration is called the centripetal force and is 
directed toward the center of the circular path. Every body that moves in a circular path does so under the 
action of a centripetal force. A body moving with uniform speed in a circle is not in equilibrium. From 
Newton's second law, the magnitude of the centripetal force is given by: 

= V 2 
Fc mac = m r = mz2r (16) 

where m is the mass of the moving object, V is its linear speed, r is the radius of the circular path, and w is 
the angular speed. If m is in slugs, V in ft/sec, and r in ft, then Fc is in lb. If m is in m/sec, V in m/sec, and 
r in m, then Fc is in newtons. 

An inspection of Equation 16 discloses that the centripetal force necessary to keep a body in a 
circular path, as shown in Figure 2, is directly proportional to the square of the speed at which the body 
moves and inversely proportional to the radius of the circular path. If the speed is doubled, keeping the 
radius constant, the centripetal force becomes four times as great. If instead, the radius is cut in half, with 
the speed remaining constant, the centripetal force increases to twice as great. If at any instant the cord in 
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Figure 2 breaks, eliminating the centripetal force, the rock will retain the velocity it has at the instant the 
cord breaks and travel at constant speed along a line tangent to the circular path at that point. The act of 
throwing a baseball follows the exact same principle. 

Centripetal
force exerted by
cord on rock 

Centrifugal 

rock on cord
force exerted by 

Figure 2  Centripetal and Centrifugal Forces 

Work has been defined as the product of a force and a displacement in the direction of the force. 
Since centripetal force acts at right angles to the direction of motion, there is no displacement in the 
direction of the centripetal force, and it accomplishes no work. No energy is expended on or by an object 
while it is moving at constant speed in a horizontal circular path. This conclusion is consistent with the 
observation that, if the speed is constant, the kinetic energy of the body is also constant. 

As the speed of a flywheel increases, the force needed to hold the parts of the wheel in circular 
motion increases with the square of the angular speed, as indicated by Equation 8.7. If the speed becomes 
high enough, the cohesive forces between the molecules of the material that the flywheel is made of are no 
longer sufficient and the wheel disintegrates, the parts flying off along tangent lines like mud from an 
automobile tire. Whenever news reports of an aircraft engine failure during flight, it is often due to rotating 
fan blades in the engine coming apart from the stresses created by the combination of heat and rotational 
forces. 

When a container of liquid is being whirled in a horizontal circular motion, the container exerts an 
inward force on the liquid sufficient to keep it from spilling out. The bottom of the container presses on the 
layer of liquid next to it; that layer in turn exerts a force on the next; and so on. In each layer, the pressure 
must be the same all over the layer or the liquid will not remain in the layer. If the liquid is of uniform 
density, each element of volume with a mass m in a given layer will experience an inward force (mV  2/r) 
just great enough to maintain it in that layer and there will be no motion of the liquid from one layer to 
another. If, however, the layer is made up of a mixture of particles of different densities, the force required 
to maintain a given element of volume in that layer will depend upon the density of liquid in that element. 
Since the inward force is the same on all the elements in a single layer, there will be motion between the 
layers. For those elements which are less dense than the average, the central force is greater than that 
necessary to hold them in the layer; hence they are forced inward. For the elements more dense than the 
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average, the central force is insufficient to hold them in the layer and they will move to a layer farther out. 
As rotation continues, the elements of the mixture become separated, with the least dense nearest the axis of 
rotation and the most dense farthest from the axis. This behavior is utilized to our advantage in the 
centrifuge, a device for separating liquids of different densities. Very high speed centrifuges may be used 
to separate gases of different densities. 

Airplane pilots, who put their aircraft into a very tight turn or pull out of a steep dive at high 
speed, often experience centripetal accelerations several times as large as the acceleration due to gravity. 
Under these circumstances, the flow of blood to the pilot's brain is decreased unless other measures are 
taken to counteract these forces. Without a "g-suit" strapped to his torso, these high g-forces can cause the 
pilot to lose consiousness ("black out") during such periods of maximum acceleration. 

Turns 
A runner, in going around a curve, leans inward to obtain the centripetal force that causes him to 

turn as shown in Figure 3.  The track must exert an upward force sufficient to sustain his weight, while at 
the same time it must provide a horizontal centripetal force. If the track is flat, the horizontal force must be 
entirely frictional. In that case, the frictional force may not be large enough to enable a sharp turn if the 
surface of the track were smooth. If the track is tilted from the horizontal, a portion of the horizontal force 
can be sustained by the horizontal component of the reaction force provided by the track surface while the 
remainder is still supplied by friction. If the angle of banking is properly selected, the force the track 
exerts, which is perpendicular to its surface, will be sufficient to provide the necessary horizontal force 
without friction. 

A 

B C 

C' 

A' B' 

w 

Fc 

f 
f 

Fr 

(a) (b) 

Figure 3 A Banked Turn 

For this ideal case, as shown in Figure 3, the reaction force Fr of the track is perpendicular to the 
surface AC. The force due to the weight of the runner w is directed vertically downward. The resultant 
force Fc is the horizontal centripetal force. In the force triangle in Figure 3, the angle fis the angle of bank 
of the track: 

t = mV 2/r V 2 
an v Fc/w = mg = rg (17) 

Equation 17 indicates that, since the angle of bank depends upon the speed, the curve can be ideally banked 
for only one speed. At any other speed, the force of friction must be depended upon to prevent slipping. 

Let us now consider the turning flight of an airplane. In particular, we will only examine three 
specialized cases: (1) a level turn, (2) a pullup, and (3) an inverted pulldown (split-s).  A study of the 
generalized motion of an airplane along a three-dimensional flight path is beyond the scope of this series. 
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A level turn is illustrated in Figure 4.  Here the wings of the airplane are banked through the angle f; hence 
the lift vector is inclined at the angle f to the vertical. The bank angle f and the lift L are such that the 
component of lift in the vertical direction exactly equals the force due to weight of the aircraft: 

w = L cos f (18) 

and therefore the airplane maintains a constant altitude, moving in the horizontal plane. The resultant of L 
and Fw leads to a resultant centripetal force Fc which acts in the horizontal plane causing the airplane to 
turn in a circular path with a radius of curvature equal to R and a turn rate of w . 

f 

f 
q 

Fli
ght

 Pa
th 

Top view (horizontal plane) 

Horizontal plane 

Front view 

L 

R 

w 

Fc 

R 

Figure 4  An Airplane in a Level Turn 

From the force diagram in Figure 4, the magnitude of the resultant force is: 

F L2 - w2
c = 

If we introduce a new term, the load factor n, defined as: 

n  ”  L/w 

and combine the above equation with Equation 18, we can show that load factor can be expressed as a 
function of bank angle only: 

n = L = 1/ cos v (19) L cos v 

Load factor is usually quoted in terms of "g's"; for example, an airplane with lift equal to five times the 
weight is said to be experiencing a load factor of 5 g's. Hence, the centripetal force can be written as: 

Fc = w n2 - 1 (20) 

The airplane is moving in a circular path at the velocity V; therefore, the centripetal force can also be 
expressed from Equation 16 as: 
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Fc = m V 2 
= wV 2 

(21) R gR 

Combining Equations 20 and 21 and solving for R, we have: 

V R = 
2 

g n2 - 1 (22) 

And, the turn rate w = V/R.   Thus, from Equation 21, we have: 

g 
z= n2 - 1 (23) V 

For the maneuvering performance of an aircraft, both military and civilian, it is frequently advantageous to 
have the smallest possible R and the largest posssible w. Equations 22 and 23 show that, to obtain both a 
small turn radius and a large turn rate, we must have: 

1. The highest possible load factor (n = L/w) 
2. The lowest possible velocity 

Consider the second case of a pullup maneuver where the airplane, initially in straight and level 
flight, suddenly experiences an increase in lift. Since the lift is greater than the weight of the airplane in 
this case, the airplane will begin to accelerate upward in a "vertical turn" or circular path in the vertical 
plane as shown in Figure 5.  From the force diagram in Figure 5, the centripetal force Fc is vertical and is 
given by: 

Fc = L - w= w(n - 1) (24) 

L 

R 

q 

Fc 

w 
Figure 5  The Pullup Maneuver 

We have from Equation 21: 
= V 2 wV 2 

 Fc m = (21) R gR 

Combining Equations 21 and 24 and solving for R we get: 
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R = V 2/g(n -  1) (25) 

And, the turn rate w = V/R. Thus, from Equation 25, we have: 

w   = g(n  -  1)/V  (26) 

A related case is case 3, the inverted pulldown maneuver, illustrated in Figure 6.  Here, an 
airplane, initially in straight and level flight, suddenly rolls to an inverted position, such that both L and Fw 

are pointing downward. The airplane will begin to turn, in the vertical plane, downward in a circular flight 
path with turn radius R and turn rate w. By an analysis similar to the pullup above, the following results 
are easily obtained: 

wFc = L + w = w(n + 1)= V 2 
(27) gR 

R   
  =  V 2/g(n  +  1) (28) 

w   = g(n  +  1)/V (29) 

L 

W 

R 

q 

Fc 

Figure 6  The Inverted Pulldown Maneuver 

Considerations of turn radius and turn rate are particularly important to military fighter aircraft; 
everything else being equal, those airplanes with the smallest R and the largest w will have definite 
advantages in air combat. High performance fighter aircraft are designed to operate at high load factors, 
typically from 5 to 9 g's; and if the turn is accomplished at the exact speed where the aerodynamic lift 
generated by the wing is sufficient to produce the maximum g at the minimum speed, the tightest turn will 
result with the aircraft possessing its highest energy level. This speed is often referred to as the "corner 
velocity" of the aircraft. 
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Curvilinear Motion 

Frequently the net force acting on a body is neither parallel to the direction of its motion nor at 
right angles to that direction. In this case, neither the speed nor the direction remains constant. Such 
motion may be readily studied by considering two components of the acceleration, one parallel to the 
original direction of motion, the other perpendicular to that direction. 

One of the most common of such motions is planetary motion, in which the force on the moving 
body is inversely proportional to the square of the radius and always directed toward a fixed point. The 
body travels in an ellipse, the fixed point being at one focus. The speed of the moving body is greatest 
when the body is nearest the focus, less when it is further away. This motion is called planetary motion 
because the planets move in this manner in their journeys around the sun. Comets have much more 
elongated elliptical paths that carry them outside the solar system at their furthest distance from our sun. 
Since electrified particles show a similar law of attraction, we should expect them to behave in the same 
manner as those moving under the action of gravitational forces. 

Another simpler example of curvilinear motion that is closer to home is projectile motion. The 
science of the motion of projectiles is called ballistics. The simplest type of ballistic motion is that in 
which the projectile is given an initial velocity and then allowed to move under the influence of gravity 
alone. True projectile motion is that in which an object is given an initial velocity and then allowed to 
proceed under the action of gravity and also air resistance. Other objects which are self-propelled, such as 
rockets and missiles, move in the same manner as projectiles except that they do not depend upon an initial 
impulse alone, but also  upon a sustained force throughout most of its flightpath.  The initial speed of the 
rocket or missile may be quite low since it is continually gaining speed along its path. 

All of these examples of curvilinear motion are outside the scope of this series.  They are 
mentioned here to provide a knowledge of their existence. 

Summary 

In uniform circular motion: (a) the speed  V is constant; (b) the direction of the motion is 
continually and uniformly changing; and (c) the acceleration  ac  constant in magnitude and is directed 
toward the center of the circular path. The magnitude of the central acceleration is given by: 

V ac = 
2 

r = z2r (15) 

where V is the linear speed, r is the radius, and w is the angular speed. 
The centripetal force, the inward force that causes the central acceleration, is given by: 

V Fc = 
2 

m r = mz2r (16) 

The proper banking of a curve to eliminate the necessity for a horizontal frictional force is given by 
the relation: 

= V 2 
tan h gr (17) 
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The load factor being pulled by an airplane in level turning flight is defined as: 

n = L/w =  1/cos  f (19) 

The turn radius is given by: 
= V 2 

R g n2 - 1 (22) 

and the turn rate is: 
z= g n2 - 1 /V (23) 

The turn radius and turn rate for a pullup is given by: 

R = V  2/g(n  -  1) (25) 

w = g(n  -  1)/V (26) 

And, the turn radius and turn rate for an inverted pulldown is given by: 

R = V  2/g(n  +  1) (28) 

w = g(n  +  1)/V (29) 

Often in curvilinear motion, the accelerating force is neither parallel nor perpendicular to the 
direction of motion. In this case, the acceleration produces change in both speed and direction of motion. 
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1.0 Definitions 

Center of gravity (cg) - The point about which the 
plane would balance if it were possible to suspend 
the plane at that point; the mass center of the plane 
at which the entire weight of the plane is assumed 
to be concentrated. 

Center of gravity limits - The specified forward 
and aft points within which the cg must be located 
during flight. 

Reference datum line (RDL) - An imaginary 
vertical line from which all arm measurements are 
taken. 

Arm - The horizontal distance from the Reference 
Datum Line to the cg of any particular item. 

Moment - The product of a force (or weight of an 
item) multiplied by its arm. The total moment of an 
object is the weight of the object multiplied by the 
length of the arm from the RDL to the cg. 

Moments and Arms 

Control - The ability to generate desired 
movements through the use of forces. 

Fulcrum - The pivot point of a lever; balance point 
of a beam. 

Longitudinal axis - An axis of rotation through the 
cg which runs from nose to tail of the aircraft. 
(Figure 2.1) 

Lateral axis - An axis of rotation through the cg 
which runs from wingtip to wingtip of an aircraft. 
(Figure 2.1) 

Directional axis - An axis of rotation perpendicular 
to the longitudinal and lateral axis which runs 
vertically through the center of gravity. (Figure 
2.1) 

Figure 2.1 Aircraft Axis 

NOTE: 

Session 3 of the text should be reviewed prior to 
starting the video. 

2.0  Balancing Forces and Moments 

During the first session we determined that an 
object’s weight is a measure of the force it exerts on 
the Earth. We also saw how according to Newton’s 
third law, forces exist in “equal and opposite” pairs. 
 Any time an out of balance force exists, there is an
acceleration in the direction of the greater force. 
Many times when we use a  see-saw we are faced 
with two forces (or weights) which are not equal. 
Then to level the board over the fulcrum, we used 
the concept of balanced moments, as shown in 
Figure 2.2 

NOTE:
 

All axes pass through the center of gravity and are 
perpendicular to each other at that point.

Figure 2.2 Balanced Moments of a See-Saw 

Recall that a moment is the product of a force 
multiplied by a distance, or arm. Therefore it 
stands to reason that a smaller force acting at a 
greater distance could quite easily balance a larger 
force acting at a smaller distance. 
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NOTE: 

Mechanics often refer to a moment as a “torque” 
and will list automobile performance in the form of 
“foot-pounds of torque.”  Additionally, the “torque 
wrench” used in auto repair is simply the 
mechanic’s arm strength applied over the known 
length of the wrench. A gauge indicates “foot­
pounds or inch-pounds” of torque based on the 
amount of force applied by the mechanic. 

The following example highlights how moments 
are balanced. 

Example 1: A person weighing 175 pounds sits 4 
feet from the end of a bench seat. A second person 
weighing 200 pounds wants to sit at the opposite 
end of the bench. If the fulcrum is in the middle of 
the 12 foot bench, how far from the end should the 
200 pound person sit for the bench to remain level? 

3. 	Therefore, the 200 pound person should sit 4.25 
feet from the right end of the bench. 

4.	 If the fulcrum is in the middle, 6 ft are on each 
side. Therefore the distance from the fulcrum 
is 6 - 4.25 ft. = 1.75 ft. 

Proof: 
175 lbs. × 2 ft. = 200 lbs. × 1.75 ft 

300 ft-lbs  = 300 ft-lbs 

In the above example, the arms were measured 
with respect to the pivot point. However when 
dealing with aircraft we’re trying to FIND the 
balance point, or more specifically, the center of 
gravity. Therefore the arms are measured with 
respect to the reference datum line (RDL). This 
imaginary line is usually located at the nose of the 
aircraft and is used solely as a reference point for 
calculating the center of gravity. 

3.0 	 Significance of Weight & Balance 

Solution: 
1.	 Calculate the moments on the left side of the 

fulcrum: 

force × arm = moment 

(175 lbs) × (6 ft - 4 ft) = 350 ft-lbs

 Caution: 

The question is asking how far from the END of the 
board should the person sit. Since in this case we 
are balancing the bench with reference to the 
fulcrum, and the fulcrum is in the middle of the 
board, the arm is subtracted from half the board 
length. 

2.	 To balance the bench, the moments on the left 
must equal the moments on the right, therefore: 

350 ft-lbs = (200 lbs) × (6 ft - a ft) 

350 ft-lbs = 1200 ft-lbs - 200 lbs × (a)ft 

(350 ft-lbs) - (1200 ft-lbs) = - 200 lbs × (a)ft 
- 850ft - lbs = 4.25ft = (a)- ft 200lbs 

Determining an aircraft’s total weight and the 
location of the center of gravity is crucial to 
predicting the aircraft’s performance and 
controllability. As we will see in future sessions, an 
increase in an aircraft’s weight has a direct impact 
on the following areas of that plane’s performance: 

higher takeoff speed 
longer takeoff run 
longer landing roll 

How the weight is distributed aboard an aircraft 
is in part determined by the pilot and in part 
determined by the designer. The pilot can affect 
how much fuel, people, and cargo is put onboard 
but the designer decides where the fuel, people, and 
cargo are placed. The designer’s decisions are 
based upon being able to balance the airplane and 
control the aircraft’s movements. Uppermost in the 
designer’s concern for balancing the aircraft is the 
fore and aft location of the center of gravity along 
the longitudinal axis of the aircraft. Balancing the 
aircraft results when the sum of the moments 
around the center of gravity equals zero, often 
written as �Mcg = 0.  However, balancing the 
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aircraft on the lateral axis left and right of the 
longitudinal axis is also very important. Each item 
in an aircraft has weight and subsequently exerts a 
force at a specific location on the plane. Resolving 
these forces into one resultant force acting at a 
specific location will yield the center of gravity of 
the airplane.

 Caution: 

The student should be familiar with the method 
involved in resolving parallel forces into a single 
resultant force.  See Example 2.1 and 2.2 of the 
Operational Supplement for an explanation of 
resolution of forces. 

Weighing the Aircraft

This may seem very basic however it is very
important to place a scale under each point of
ground contact.  Failure to do so will result in an
erroneous total.

The cg is not necessarily a fixed point for every 
loading condition; its location depends on the 
weight distribution of the aircraft.  As fuel is 
burned throughout a flight or passengers change 
seats, the  cg shifts accordingly.  The designer has 
accounted for this movement to a certain degree by 
providing the pilot with a range of acceptable  cg 
locations where aircraft control may be retained. 
The amount of control a pilot has is a function of 
the size of the control surfaces and how large of a 
moment these surfaces can generate. Control 
surfaces include the elevator on the tail which 
creates a force to rotate the aircraft about the lateral 
axis; ailerons on the  wing which rotate the aircraft 
about the longitudinal axis; and the rudder on the 
tail which rotates the aircraft about the directional 
axis. In order to generate a moment, the control 
surface must create a force located at a distance 
from the center of gravity. When an aircraft is in 
flight, any force exerted by a control surface tends 
to rotate the aircraft around the center of gravity 
making knowledge of the  cg location critical. 
Determining the location of the  cg begins with 
weighing the aircraft. 

Some aircraft have very unusual landing gear
arrangements.  For example, the  U.S. Air Force 
B-52 bomber has an “outrigger” landing gear under 
each wingtip.  These support the weight of the
wings when they are full of fuel. Therefore, in order
to get the total weight of a B-52, a scale would also
have to be placed under each “outrigger” gear.  The
video depicts the procedures involved with weighing
NASA’s F-18 High Angle of Attack Research
Vehicle (HARV).   The aircraft was lifted by a
crane and large scales were placed  under the
landing gear.

4.0 Weighing An Aircraft 

Determining the weight of an aircraft is simply 
a matter of summing forces. A scale is placed 
under each point where the aircraft touches the 
ground, and the readings of all the scales are then 
added together. 

Caution: 

Lifting Aircraft 

Once the total weight of the aircraft is determined, 
determining the center of gravity location is 
accomplished through resolution of the forces into a 
resultant force acting at the cg of the aircraft. 
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**STOP VIDEO after two lines 
marked on metal** 

cg of irregular shape 

NOTE: 

The video also demonstrated an experimental way 
of determining the cg of an irregular shaped object. 
Further explanation may be found in the 
Operational Supplement for this session. 

Example 2: Determine the center of gravity 
location of the F-18 HARV given the following 
weights and arms: 

item weight 
(lbs) 

arm 
(ft)

moment 
(ft-lbs)

(ft) Nose Wheel 6,000 18.2 
Main Wheels (ea.) 10,000 36.2 

Total 26,000 

F-18 HARV Weights 

Solution: 

Using the relationship that the = Scg moment 

Sweight we:
First, find the total weight and moment for the 
entire aircraft. 

item weight arm 
(ft)(lbs) 

moment 
(ft-lbs)

Nose Wheel 6,000 18.2 109,200 
Main Wheels (ea.) 10,000 36.2 362,000 

Total 26,000 833,200 

(ft) 

Second, by dividing the total moment by the 
total weight, the location of the cg is found. 

833, 200ft - lbs 
26, 000lbs 

= 32.04ft from the Reference Datum Line 

NOTE: 

For the purposes of this example, the Reference 
Datum Line is assumed to be at the nose of the 
aircraft. The arm to the nose wheel is 18.2 feet and 
the arm to the main wheel is 36.2 feet. Therefore, 
the cg is 32.04 feet from the nose. 

**START VIDEO** 

As stated previously, the designer accounts for 
movement of the cg in flight by providing an 
acceptable cg range where control of the aircraft 
can be maintained. When fuel is burned, weight is 
removed, so there is less force acting at a given 
point on the aircraft. The cg location will therefore 
change. For the aircraft to be balanced in flight, the 
moments forward of the cg must be equally 
opposed by the moments aft of the cg. The 
following example will highlight how center of 
gravity moves in flight. 

Example 3: Given the following items and 
associated arm lengths, calculate how much the 
center of gravity moves when all of the fuel is 
burned from the # 1 fuel tank. 

item weight 
(lbs) 

arm 
(ft) 

moment 
(ft-lbs) 

Empty airplane 26,000 32.04 833,200 
pilot 155 15.00 
#1 fuel tank 2,150 25.00 
#4 fuel tank 3,620 36.55 
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F-18 HARV Loading Diagram 
Solution: 
Again using the relation that the 

armcg = total moment 
total weight 

1. Calculate the moment for each item: 
pilot 155 lbs × 15.0 ft = 2,325 ft-lbs 
#1 2,150 lbs × 25.0 ft = 53,750 ft-lbs 
#4 3,620 lbs × 36.5 ft = 132,311 ft-lbs 

2. Determine the current cg location 
item 

Empty airplane 

weight 
(lbs) 

26,000 

moment 
(ft-lbs)

833,200 
pilot	 155 2,325 
#1 fuel tank 2,150 53,750 
#4 fuel tank 3,620 132,311 

Total 31,925 1,021,586 

 

 

1, 021, 586ft - lbs 
31, 925lbs 

= 32 feet from the Reference Datum Line 

NOTE: 

As you can see even adding fuel and pilot, the cg 
only moved 0.4 feet (4.8 inches) compared to the 
over all length of the airplane.  This is negligible. 

3.	 Determine how much the cg moves when the 
fuel in # 1 tank is burned off. To do this, 
simply subtract the weight of the fuel in # 1 
tank from the total weight, and subtract the 
moment from the total moment. Then calculate 
the new cg by dividing the new moment by the 
new weight. 

31,925 lbs  -  2150 lbs = 29,775 lbs 

1,021,586 ft-lbs - 53,750 ft-lbs = 967,836 ft-lbs 

New cg location is 

967, 836ft - lbs = 32.51ft 29, 775ft 

32' 
32.51' 

RDL 

The movement of the center of gravity may not 
appear to be very significant, however if the 
airplane is to stay balanced (remain in level flight) 
the force that has been lost due to removal of the 
fuel weight, must be replaced with a force created 
by the tail. If the amount of weight removed cannot 
be replaced by a force generated by the tail, the 
aircraft experiences what is termed “loss of control 
authority.” What this really means is the cg has 
moved to a location where the force created by the 
tail is no longer sufficient to keep the plane level. 

Downforce Created  by Tail 

Consider the following: 

Example 4:  Assuming the fuel has burned out of 
Tank # 1, as shown in Example 3, how much force 
must be generated by the tail to keep the cg in the 
same location (32 feet) if the tail is located 51 feet 
from the Reference Datum Line? 

2.5
 



 
  

RDL 1,053 lbs 

51 ft 

 

 
 

 

 

 
 

 

Session 2
 
Weight and Balance
 

Solution: 
Using the basic relationship armcg = total moment 

total weight 
1.	 Determine the total moment lost when the fuel 

in # 1 tank burned. 
item weight 

(lbs) 
arm 
(ft) 

moment 
(ft-lbs) 

#1 fuel tank 2,150 25.00 53,750 

2.	 Determine the tail force required. 

The moment which must be replaced to keep 
the cg at 32 feet is found by step 1. Since the tail 
has an arm of 51 feet, the force is found by dividing 
the moment needed by the arm length. 

moment 
arm = force 

53, 750ft - lbs = 1053lbs 51ft 

Then to keep the aircraft in level flight, the tail 
must generate 1053 pounds of force. The total 
amount of force a tail can generate is based on a 
number of factors including the speed, distance of 
the tail from the reference line, and the size of the 
tail. Based on these factors the designer sets the 
amount the cg can move in flight since he has 
calculated the maximum amount of up (or down) 
force the tail can generate. A force generated by an 
aerodynamic surface, such as a wing or tail, is 
termed lift. How lift is generated is the subject of 
the next session. 

5.0 Measures of Performance 

ANSWER 
Moment - The product of a force (or weight of 
an item) multiplied by its arm. The total 
moment of an object is the weight of the object 

multiplied by the length of the arm from the 
RDL to the cg. 

2	 What is the relationship between the flight 
control surfaces and the cg? 

ANSWER 
The designer has accounted for this movement 
to a certain degree by providing the pilot with a 
range of acceptable cg locations where aircraft 
control may be retained. The amount of control 
a pilot has is a function of the size of the 
control surfaces and how large of a moment 
these surfaces can generate. In order to generate 
a moment, the control surface must create a 
force located at a distance from the center of 
gravity. When an aircraft is in flight, any force 
exerted by a control surface tends to rotate the 
aircraft around the center of gravity making 
knowledge of the cg location critical. 

6.0  	Suggested Activity 

1	 A suggested activity is to have each student 
determine the center of gravity of an object 
found in the classroom by both the 
experimental and the analytical methods. 

2 Calculate the cg of a model car or plane. 
a Place a postal scale under each wheel.  Add 

the readings of each scale to get the model 
total weight. 

b Now measure the location of the wheel with 
respect to the nose of the model, i.e., find 
the arm of each wheel. 

c	 Generate a chart similar to that of Example 
3. Divide the total moment by the total 
weight and get the cg location. 

d	 Suspend the model by a string located at 
the calculated cg location and determine if 
the model is level. If not, remeasure and 
try again. 
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Operational Supplement 


Center of Gravity 

We often represent the weight of a body by a single force w , acting downward. Actually, the 
earth exerts a force of attraction on each particle of a body; the weight of the body results from adding all 
the forces that act on all of the particles of the body. The weight w  not only has magnitude and direction, 
but, it has a line of action which passes through a special point in the body known as the center of gravity. 

A single force F acting vertically upward can be used to support a body of weight w . The first 
condition of equilibrium states the vector sum of all the external forces acting on the body must be zero, so 
the magnitude of the force Fequals the weight w . This condition, however, is not sufficient to ensure 
equilibrium. The second condition of equilibrium states the vector sum of all the moments which result 
from these forces, must equal zero.  To accomplish this the forces must be equal in magnitude and opposite 
in direction. When only two forces act on a body, this second condition of equilibrium can be fulfilled only 

if F and w act along the same straight line. If the force F is applied at any arbitrary point A  in the body 
shown in Figure 1(a), the body will, in general, rotate about point A as an axis and then ultimately come to 

rest in an orientation which places F and w  along the same line of action as in Figure 1(b).  If the body is 
now supported at some other point B, the body will rotate about point B as an axis and ultimately come to 

rest in an orientation which again places F and w  along the same line of action as in Figure 1(c).  The 
lines which pass through A  and B intersect at a point C which is the center of gravity (cg) of the body. If a 

single force F = - w  could be applied at the center of gravity C, the body will be in equilibrium no matter 
how it is oriented as shown in Figure 1(d). 

In many cases of practical interest, the position of the center of gravity of a body can be calculated 
with the aid of a simple theorem that states: The moment about any axis produced by the weight of the 
body acting through the center of gravity must equal the sum of the moments about the same axis 
produced by the weights of the individual particles of the body. 

_ 
F 

_ A 
F 

_ 
w (a) (b)A 

_ _ 
F w 

_
A

C 

B F 

B 
_ _A 

C

w (c) w (d) 

Figure 1 Determining the Center of Gravity 

Example 1.  Let’s assume that we want to know the weight and center of gravity of an empty 
passenger aircraft sitting on the ground at Kennedy International Airport in New York as depicted in Figure 
2.  Since the aircraft is at rest, we know that weight of the aircraft is supported by the forces exerted by the 
pavement beneath each landing gear. We also know from the above theorem that the sum of the clockwise 
moments produced by each gear about some axis of rotation, say, the tip of the nose of the aircraft, is 
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exactly balanced by the counterclockwise moment produced by the weight of the aircraft acting through the 
center of gravity. If we pulled the aircraft onto a set of platform scales and measured the gear reaction 
forces as 100,000 lb for each of the two main gear and 25,000 lb for the nose gear and the distances of the 
main and nose gear aft of the nose of the aircraft were measured to be 50 ft and 10 ft, respectively, we 
would get the following results: 

xcg 
50 ft 

10 ft 
Fng Fw ac Fmg

Figure 2 Measuring Weight and Center of Gravity 

SF = Fwac + Fng + Fmg = 0
 

wac = - Fwac = Fmg + Fng = 2 $100, 000lb + 25, 000lb = 225, 000lb
 

SM = Mwac + Mng + Mmg = 0
 

225, 000lb $xcg = 2 $100, 000lb $50ft + 25, 000lb $10ft = 10.25 $106ft - lb 

xcg = 10.25 $106ft - lb/225, 000lb = 45.56ft 

We now know that the aircraft, empty of fuel, passengers, and baggage weighs 225,000 lb and has 
a cg 45.56 ft aft of the nose. If we then fuel the aircraft with 40,000 gal of jet fuel weighing 6.25 lb/gal in 
fuel tanks that have a centroid (center of the volume or mass) location of 40 ft aft of the nose and load the 
aircraft with 200 passengers weighing an estimated total of 40,000 lb with a centroid of 55 ft aft of the 
nose and 10,000 lb of baggage in a baggage hold with a centroid of 50 ft aft of the nose, what would be the 
engine-start gross weight and cg? The results are: 

Fwtot = Fwac + Fwf + Fwp + Fwb
 

F = 225, 000lb + 40, 000gal $6.25 lb
 
wtot gal + 40, 000lb + 10, 000lb = 525, 000lb 

Mwtot = Fwac $xcg + Fwf $xf + Fwp $xp + Fwb $xb 

Mwtot = (225, 000lb $45.56lb)+  (40, 000gal $6.25 lb 
gal $40ft)+  (40, 000lb $55ft)+  (10, 000lb $50ft)  

= 22.95 $106ft - lb 

xcg = M 6
wtot /Fwtot = 22.95 $10 ft - lb/525, 000lb = 43.71ft 

So, the fully loaded aircraft has a weight of 525,000 lb and a cg 43.71 ft aft of the nose. Notice that the 
c.g. is at a location forward of the main gear. What would happen if the cg was aft of the main gear? 
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Example 2.  Let's take the same fully loaded aircraft in the above example and look at forces 
acting on the aircraft after takeoff and after it has levelled  off at cruise altitude with 4,000 lb of fuel having 
been burned to get there as shown in Figure 3 .  The aircraft is in stabilized, level flight, such that the 
weight of the aircraft is supported by the lift forces being generated by the wing and the tail. If the center 
of pressure on the wing (where the resultant wing lift force acts) is located at 45.0 ft aft of the nose of the 
aircraft and the center of pressure of the tail is 105 ft aft of the nose, what are the magnitude and direction 
of the forces acting on the wing and tail? Again, the sum of the lift forces on the wing and tail are equal 
and opposite to the weight of the airplane and the sum of the clockwise moments produced by the lift forces 
about the nose is exactly balanced by the counterclockwise moments produced by the weight of the aircraft 
acting through the center of gravity. We must first recalculate the weight and center of gravity of the 
aircraft after 4,000 lb of fuel have been consumed: 

x c  g 
45  f  t 

105 ft 

tailF
WF 

air wingF

Figure 3  Level Flight Forces and Moments 

F = F - F = 525, 000lb - 4, 000gal $6.25 lb 
wair wgnd wfu gal = 500, 000lb 

Mwair = Fwair $xcg = Fwac $xac + Fwf $xf + Fwp $xp + Fwb $xb
 

M = 500, 000lb $x = 225, 000lb $45.56ft + 36, 000gal $6.25 lb
 
wair cg gal $40ft + 40, 000lb $55ft  

+ 10, 000lb $50ft = 21.95 $106 ft - lb
 

xcg = M 6
wair /Fwair = 21.95 $10 ft - lb/500, 000lb = 43.90ft
 

We must now express the equilibrium conditions of level flight in terms of the force and moment equations: 
SF = Fwair + Fwing + Ftail = 0 

SM = Fwair $xcg + Fwing $xwing + Ftail $x tail = 0  

Solving these equations simultaneously for the lift forces on the wing and tail, we get: 

500, 000lb = Fwing + Ftail  

500, 000lb $43.90ft = Fwing $45ft + Ftail $105ft  

And by substitution, we can solve for the lift forces on the wing and tail : 

500, 000lb $43.90ft = Fwing $45ft + (500, 000lb - Fwing)$105ft 
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Fwing = 500, 000lb $(105ft - 43.90ft)/(105ft - 45ft)= 509, 167lb 

Ftail = 500, 000lb - 509, 167lb = - 9, 167lb 

So, the lift force on the wing is 509,167 and the lift force on the tail is - 9,167 (a downward force). This is 
so, because the center of gravity of the aircraft was forward of the center of pressure of the wing, requiring 
a counterclockwise moment by the tail to balance the moment equation. 
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1.0 Definitions 

Acceleration (a) - The rate of change of velocity 
with respect to time, or the change in velocity over 
a given period of time. 

Airfoil - The two-dimensional profile of a wing 
section. 

Coefficient of lift (CL) - A measure of how 
efficiently a wing transforms dynamic pressure into 
a lift force; a proportionality constant which 
measures how much the pressure changes between 
the top and bottom of the airfoil. 

Density (r) (pronounced "row") - The mass of a 
substance divided by a unit of volume. 

Dynamic pressure (q) - The force exerted by a gas 
in motion. 

Momentum (mV) - The product of the mass of a 
substance multiplied by the velocity. 

Nautical mile - 6,076 feet.  Equal to a one minute 
arc of latitude at the Earth's equator. 

Knot - a measure of speed given as nautical miles 
per hour. 

Static pressure (PS) - The force exerted by a gas at 
rest. 

Total pressure (PT) - The sum of the static and 
dynamic pressures. 

Velocity (V) - The rate of change of distance with 
respect to time, or the change in distance over a 
given period of time. 

Wing area - The amount of wing surface an 
aircraft possesses. 

NOTE: 

An indepth development of lift is included in 
sections 7.1 through 7.3 of the text. 

2.0 Bernoulli's Equation 

Development of the Pressure Relationship 

In the mid-1800's, a scientist by the name of 
Daniel Bernoulli used Newton's second law to 

mathematically explain the pressure relationship 
between a moving fluid and a fluid at rest. Bernoulli 
phrased the relationship as; 

"The pressure of a mass of moving fluid in 
an open area is a constant; and that constant is 
the sum of the static pressure plus the dynamic 
pressure." 

Static pressure is presented to most people 
daily in the form of the barometer reading given by 
the local weather forecaster. This reading is in the 
form of inches (or millimeters) of mercury which 
can be directly converted to a pressure, normally, 
14.7 lbs/sq. in. at sea level.  Changes in static 
pressure can be felt when our ears feel like they 
have filled up, causing us to "pop" our ears. 
Dynamic pressure is perhaps a bit more obscure, 
but none the less common. When you put your 
hand out the window of a moving car, you appear 
to feel the "force of the wind" pushing your hand 
backward. What you are really experiencing is the 
dynamic pressure (q) which is the result of the 
velocity of the air mass (or in this case, the velocity 
of the car through the air mass). The only time 
dynamic pressure can be measured is when the flow 
of the air mass is brought to rest upon some type of 
measuring device. In fact, Bernoulli determined 
that dynamic pressure can be given the numerical 
value of: 

q  = 1/2 (r) V 2 

where r is the fluid density and V is the velocity 
of the fluid mass. 

Then Bernoulli's relationship can be written 
mathematically as: 

constant = PS  + q 
or 

constant = P  
S  + 1/2 (r) V 2 

where PS is the static pressure of the fluid. 

Since the constant is just the sum of the static 
and dynamic pressures, it is given the name Total 
Pressure or PT. Therefore: 

P  
T  = PS  + 1/2 (r) V 2 
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From this relationship, you can see that if the left 
side of the equation is to remain constant, when one 
of the pressures on the right increases, the second 
pressure on the right must make a corresponding 
decrease. Consider the following example: 

Example:  A man is standing still in calm air on the 
beach holding a barometer which indicates 29.92 
inches of mercury. If one inch of mercury equals 
0.4912 pounds/square inch of pressure, what is the 
total pressure the man experiences? 

Solution: 
1. From Bernoulli's equation 

P  
T  = PS  + 1/2 (r) V 2  

we can see 
PT  = 29.92 inches of Hg + 0 

so 
PT  = (29.92 inches of Hg) (0.4912 inches of 

Hg/Pounds per square inch) 

PT  = 14.7 pounds/square inch

 Caution: 

The man is standing still in calm air, therefore there 
is NO dynamic pressure. As a result, the total 
pressure is simply equal to the static pressure. 

In the above example neither the man nor the 
air was moving. Therefore since the velocity was 
zero, there was no dynamic pressure to be 
considered. The early aviation pioneers built upon 
Bernoulli's equation and went back to Newton's 
second law to develop the origins of lift. 

**START VIDEO** 

3.0 Lift and the Rate of Change of Momentum 

We have written Newton's second law as F =
ma

 
, however we know that acceleration, a, is the 

rate of change of velocity, V, with respect to time. 
In other words, acceleration is the measure of how 
the velocity changes written as "DV" or "dV" over a 
given period of time written as "Dt" or "dt."  We 

also know that momentum is the product of an 
object's mass multiplied by its velocity, or (mV). 

Incorporating these relationships into the 
equation for Newton's second law, we can rewrite 
the law as: 

F = (mass) × (DVelocity/Dtime) 
or 

F = m (DV/Dt) 

If we look at the change in velocity during any 
given period of time as being the difference between 
the beginning velocity (V0) and the ending velocity 
(Vf) we can again rewrite Newton's second law as 

m(Vf - V0 )
F = dt 

Since we also know mV is momentum, then the 
Second Law can be termed; 

F  = Rate of Change of Momentum 

**STOP VIDEO** 

Early aerodynamicists used this theory to 
predict that if a downward rate of change of 
momentum could be achieved, the equal and 
opposite force would be in the upward, or "lifting" 
direction. The difficulty in putting this theory into 
practice came from determining how to get a rate of 
change of momentum in the downward direction. 
Here is where the use of an airfoil became 
invaluable for a number of reasons. 

Looking at the profile of a wing, (Figure 3.1) 
we can see the shape looks like an elongated water 
drop laying on its side. This shape is referred to as 
an airfoil. Usually the top is curved more than the 
bottom making the upper surface slightly longer 
than the bottom. Since air passing over the top and 
bottom must reach the rear of the wing at the same 
time, the air passing over the top must not only 
travel faster, but also changes direction and is 
deflected downward. This actually results in lift 
being generated due to a rate of change of vertical 
momentum and a difference in static pressure 
between the top and bottom of the wing. 
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At this point it is important to explain several 
terms used by pilots and engineers. Looking at the 
airfoil in Figure 3.2 will help clarify these terms. 

a = angle of attack Direction 
of flight 

wind 
Relative 

chord linea 

Figure 3.1 Terminology 

To begin, the chord line is an imaginary line 
drawn from the leading edge to the trailing edge of 
an airfoil. Secondly, the relative wind is the airflow 
which acts on the airfoil and is parallel to but 
opposite the direction of flight. The angle between 
the chord line and the relative wind is called the 
angle of attack. This is called "alpha" and the 
symbol used is a. As the angle of attack increases, 
the change of vertical momentum increases. 
Additionally, as the angle of attack increases, the 
coefficient of lift (CL) increases. The result is an 
increase in lift. However, there are limits to how 
much the angle of attack can be increased. Looking 
at a graph of how the lift coefficient changes with 
angle of attack, Figure 3.2 shows that at some 
higher angle of attack, the lift coefficient begins to 
decrease. 

Li
ft 

C
oe

ff
ic

ie
nt

, C
L 

Critical 
angle of
attack 

Angle of Attack, a 
Figure 3.2 Plot of CL  vs  a 

The angle of attack where the lift coefficient 
begins to decrease is called the critical angle of 
attack. Once the critical angle is exceeded, the 
wing can no longer produce enough lift to support 
the weight of the aircraft and the wing is said to be 
"stalled." In other words, the aircraft will stall 
when the critical angle of attack is exceeded. 

To investigate further, first go back to the 
second law and look at the vertical rate of change of 
momentum. 

L 

Figure 3.3 Airfoil

 Caution: 

Recall that momentum is the mass multiplied by the 
rate of change of velocity in a particular direction. 
Here we are referring to vertical momentum so we 
are only concerned with the rate of change of 
vertical velocity. 

**START VIDEO** 

The force, F, we are looking for is the lift and 
is equal to the mass of the air multiplied by the 
change in vertical velocity of the air over the wing. 
Whether a wing moves through stationary air, or air 
is blown over a stationary wing, the physics 
involved is the same. 

Therefore, we can say that in flight there exists 
an initial velocity of the air in front of the wing (V0)
 which has no vertical velocity. In Figure 3.4 we 
can also see that there is a downward deflection of 
the air at the rear of the wing (Vf).   

Figure 3.4  Airfoil In Flight 
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Change in Vertical Momentum 

Employing the second law, the rate of change of 
vertical momentum over the wing the equation 
becomes: 

m(Vf - V0 )
F = dt 

m(Vf - 0)
F = dt
 

or 
m(Vf )


F = dt

 Caution: 

Keep in mind these velocities are measured in 
the vertical direction. 

Aerodynamicists knew that density is equal to 
mass divided by a unit of volume of the air. 

(r) = m/v 

Taking a unit volume of air then v equals 1, so the 
equation becomes 

(r) = m/1 = m 

In this case, the density equals the mass, then 
the force equaiton can be written. 

q
F = vert 

Dt 

Then according to Newton's third law, the 
upward force, or lift, would be equal and opposite 
to the downward rate of change of momentum. 
Scientists found, however, that it was very difficult 
to measure the vertical velocity over an airfoil, but 

measuring the velocity of the air the airfoil was 
moving through was very simple. This is where 
they employed Bernoulli's work to help with their 
research. 

Lift Force Opposite Downward
 
Change of Momentum
 

4.0  Lift and the Bernoulli Equation 

Bernoulli equated the total pressure to the sum 
of the static and dynamic pressures. The dynamic 
pressure is a function of the air velocity and the air 
density. 

Density is directly related to temperature, which 
can be directly measured, and since the air velocity 
can also be measured, researchers had the dynamic 
pressure part of Bernoulli's equation well in hand. 

q  = 1/2 (r) V  2 

However, this was only half of the equation. 
Recall that since the upper surface of the wing is 
longer, the air must move faster over the top of the 
wing. Measuring the air velocity would only get the 
dynamic pressure, not the change in vertical 
velocity over the wing. Remember the total pressure 
is the sum of the static and dynamic pressures; and 
the total pressure must remain constant. So as one 
increases the other decreases. Then what is needed 
is how much the static pressure changes over the 
top of the wing. Since the change in static pressure 
will be different for different wing shapes, scientists 
used wind tunnels to measure that static pressure 
changes between the top and bottom of different 
wing shapes, assigning each a value referred to as 
the "Coefficient of Lift" or  CL. Now they had a 
means of determining all the pressures necessary to 
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find lift. A force, however, is a pressure multiplied 
by an area. 

F  = (PT) ( area) 

Since researchers were dealing with airfoils, and a 
wing is just several airfoils side-by-side, the logical 
area to use was the wing area, given the symbol 
"S."  At last they had all the ingredients necessary 
to define lift. The equation is: 

L = 1 
2qV 2SCL 

or 
L = q S CL 

5.0 	Summary 

We have seen how using Newton's third law, 
scientists conceived how lift could be developed. 
Taking that conceptual notion, they employed 
Bernoulli's pressure relationships to determine how 
to predict the amount of lift generated by a wing. 
We know that lift and weight are equal and opposite 
forces so lets look at one final example to tie all of 
this together. 

6.0 	Measures of Performance 

1	 What is momentum? 

ANSWER 
Momentum - The product of the mass of a 
substance multiplied by the velocity written as 
mV. 

2	 How does momentum relate to Newton's second 
law? 

ANSWER 
We can rewrite the law as: 

F = (mass) × (DVelocity/Dtime) 
or 

F = m (DV/Dt) 

If we look at the change in velocity during 
any given period of time as being the difference 
between the beginning velocity (V0) and the 
ending velocity  (Vf) we can again rewrite 
Newton's Second Law as: 

= m(Vf - V0 )
F dt 

Since we also know mV is momentum, then 
the Second Law can be termed: 

F  = Rate of Change of Momentum 

3 What is lift? 

ANSWER 
The force equal and opposite to the downward 
rate of change of momentum. 

7.0 	EXAMPLE 

Problem: 
To what speed must an aircraft be propelled 

before it can become airborne given the following 
information: 

Aircraft weight: 26,000 pounds 
Wing area: 600 square feet 
Air density: 0.002378 slugs/ft3 
Lift Coefficient: 0.8 

SOLUTION: 
1. The lift equation is: L = 1 

2qV 2SCL 

2.	 We are asked to find the velocity, therefore we 
must rearrange the equation and solve for the 
velocity term: 

1 

2L 2 

V = qSCL 

3. 	 We are given the weight and since lift must 
equal weight we can simply put the weight 
directly into the equation. 

4. 	 Substituting the appropriate values into the 
equation: 

1 
2 

2(26, 000lbs)
V = 

0.002378 slugs (600ft2 
ft3 )(0.8)
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NOTE: 

Recall that a slug/cubic foot is equivalent to a 
lb-sec2/cubic foot. 

1 

52, 000lbs 2

V = 
1.14 lbs- sec 

ft 

V = 213.4 ft/sec 

5. 	 Now we usually don't speak of aircraft speeds 
in feet per second, so to convert to miles per 
hour, multiply feet per second by 0.6818. 
Then: 

V = (213.4 ft 
sec )(0.6818 miles/hour 

ft/ sec )

V = 145 mph 

Then assuming we keep the wing area, 
coefficient of lift, and air density constant, we can 
change the amount of weight we can lift by simply 
changing the aircraft's velocity. Changing the 
airplanes velocity requires changing the engine 
thrust, which is the subject of the next session. 

8.0 Suggested Activity 

Take an thread spool and hold a piece of 
cardboard (like from the back of a tablet) with a pin 
stuck through it in the hole at the bottom of the 
spool. Holding the spool vertically, blow air 
through the hole in the top of the spool and watch 
what happens to the paper. 

Spool 

Cardboard 

Pin 
Atmospheric
Pressure 

Reduced 
Pressure 

A jet of air moves horizontally from the hole at the 
bottom and spreads out over the surface of the 
cardboard. If air is blown through with sufficient 
speed, the outward movement of the air at the 

bottom of the spool will create a low static pressure 
at the base of the spool. The higher pressure from 
the atmosphere under the cardboard will hold it 
close to the spool so you can now let go of the 
cardboard. This shows the pressure force 
overcoming the weight of the cardboard. 
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1.0 Definitions 

Coefficient of drag (CD) - A measure of how 
much of the dynamic pressure gets converted into 
drag. 

**START VIDEO** 

2.0 Introduction 

The previous section started with a discussion 
of the change in momentum of a particle of air. As 
the air hit the wing, its new trajectory was split into 
two components; one parallel to the original 
direction (relative wind) and one perpendicular to it. 
The new perpendicular momentum was shown to be 
related to the lift. The change in horizontal 
momentum was mentioned only briefly. The 
emphasis of this session is to correlate this change 
to profile drag.

 Caution: 

An airplane must fight its way through two kinds of 
drag in order to maintain steady flight; profile drag 
is the same kind of drag experienced from all 
objects in a flow. Cars, rocks, and hockey pucks 
must all overcome profile drag. Objects that create 
lift must also overcome induced drag, also known 
as drag-due-to-lift. Discussions of induced drag are 
saved for later. The video footage uses the word 
"drag" instead of "profile drag." 

The concepts from the previous session all 
apply to drag, so many of the calculations are 
repeated as well. As before, the aerodynamic force 
generated can be calculated as the rate of change of 
momentum. Since drag is defined to be along the 
direction of the relative wind, then we need only to 
look at this component of momentum. 

Figure 4.1 Change in Momentum 

Figure 4.1 shows that the air particle's 
horizontal momentum decreases as it moves along. 
Since its mass isn't changing, we can conclude that 
only the speed is decreasing. The profile drag is the 
mass times the deceleration (of the air). 

V= D
Profile Drag m % a horiz 

horiz = m Dt 

The cause of this deceleration is the loss of energy 
from skin friction and from pressure. 

3.0 Skin Friction 

Skin friction is a function of the surface area 
wetted by the airstream.  Any increase in surface 
area will increase skin friction drag. In addition to 
this area in contact with the flow, skin friction drag 
is also affected by what's happening at the contact 
point between the fluid and the surface. More 
specifically, it is affected by the fluid's speed and 
viscosity (stickiness) and by the roughness of the 
surface. 

NOTE: 

The Operational Supplement at the end of this 
session defines the various types of friction. 

Some of these effects can be demonstrated with 
experiments. To eliminate the effect of pressure 
drag, we need to use an object with constant weight 
and aerodynamic properties. A puck from an air 
hockey table should work nicely. 
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To determine how much skin friction drag 
exists, we must measure the force needed to 
overcome it. Place the puck on a flat piece of sheet 
metal or a smooth board (Figure 4.2). If you tilt the 
board slowly at an increasing angle until it starts to 
move, the weight of the puck will overcome the 
Breakout Friction. This is of course greater than 
the running friction. 

Since aircraft skin friction is more like running 
friction, it would be appropriate to show this 
measurement with the puck. To do so, tilt the 
board, hold it, slide the puck slowly and see if it 
continues at the same speed. If it slows down, tilt 
the board more and try again. If the puck 
accelerates after the push, the reduce the tilt of the 
board and try again. 

low-speed tilt) on an air hockey table, but requires a 
lot more tilt when using a more viscous fluid. The 
increase in required tilt angle demonstrates the fact 
that the speed of the flow also affects the drag. 
Technically, some of the increase in tilt is due to the 
extra pressure drag at the higher speed, but this is 
such a small difference at the low speeds in this 
experiment that it is practically unmeasureable. 

To demonstrate the effect of surface roughness, 
the experiment can be conducted with a highly 
polished board (or glass), a rough board, and a 
board with sandpaper. The above series of 
experiments can be conducted with a large 
combination of speeds, roughness, and fluids. 

Since aircraft only fly in air, skin friction is due 
only to the speed and skin roughness. Many race 
pilots and ground crews spent time waxing their
planes to get the smoothest possible surface. 

NOTE: 

Figure 4.2 Coefficient of Friction, Cf = tan c= H
A 

Since the puck's weight increases the friction 
force and the propelling force, the weight effect 
essentially cancels out and the tangent of the angle 
of the board is used to define the friction 
coefficient. 

With a measurement capability in place, we can 
show the effect of changing fluid viscosity. With 
the dry board as a baseline measurement, reduce the 
viscosity by adding a light oil or running water to 
the board. Once the puck starts moving, much less 
tilt is needed to keep it going. The test can be 
repeated with a thick, high viscosity fluid such as 
grease or molasses and will show a need for higher 
tilt. An extremely low viscosity fluid such as air 
requires very little tilt at all: If an air hockey table 
is turned on, the puck will barely slow down at all 
once set in motion. Only a very slight tilt is needed 
to keep the puck moving at constant velocity. 

To illustrate the impact of speed on skin 
friction drag, this same series of experiments can be 
repeated with a higher initial velocity on the puck. 
Keeping the puck moving at a constant high speed 
requires only a little more tilt (compared to the 

There is a small change in the viscosity of air as it 
warms up. Unlike liquids, air actually gets more 
viscous as it heats up. The difference is not 
significant for general aviation aircraft like Cessnas 
and Beechcraft, but is more important for 
fast-movers like the Concorde and SR-71 because 
they fly so fast that they heat the air around them. 

4.0 Pressure Drag 

The other component of profile drag is pressure 
drag. Pressure drag is a function of the size of the 
wake behind an object in an airstream; it can be 
reduced by streamlining the object in order to delay 
separation of the flow. A side effect of streamlining 
is an increase in the wetted (exposed) area and 
hence the skin friction, so it is important to ensure 
that a net reduction in drag is actually achieved 
when adding streamlining. Figure 4.3 compares the 
drag coefficients of various shapes which are 
immersed in the same airstream. 

The flat plate has almost no skin friction drag 
because the flow is attached to the plate only a 
short distance at the edge. The plate does, however, 
generate a strong, turbulent wake, so pressure drag 
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Figure 4.3 Drag Coefficients of Various Bodies 

is very high. Because a flat plate normal to the 
airstream creates so much drag, aerodynamicists 
avoid such additions to aircraft or automobiles. 

Figure 4.4 Large Flat Plate 

The "blunt" motorhome is a good reminder that 
designers sometimes must make compromises to 
have an all-around good package. The C-23 
Sherpa aircraft looks blunt from the front view, but 
is shaped enough in the side view to allow it to fly 
at 200 mph. 

If a cylindrical cross-section is used instead of 
a flat plate, the airflow stays attached to the surface 
almost to the shoulder producing more skin friction 
drag.  When the strength of the wake is reduced, so 
is pressure.  The diagram shows that the total drag 
is 40% lower than that of the flat plate. 

Proper streamlining of the same basic diameter 
reduces the total drag to 6% of the flat plate drag. 
The skin friction component is almost four times as 
large as in the flat plate's friction but, because the 
flow stays attached for almost all of the surface 

area of the streamlined shape, the wake and, 
therefore, the pressure drag, are minimized. 

Figure 4.5 Streamlined Shape 

4.1 Causes of Pressure Drag 

If there was no such thing as friction, then the 
flow across a surface would retain its original 
energy and wouldn’t separate from the surface. If 
this was true, then the pressure change across an 
airfoil would look like the ideal curve in Figure 
4.6(a). This ideal situation is called "total pressure 
recovery" since the pressure at the trailing edge is 
the same as that at the leading edge. In this ideal 
situation, all the pressures acting in the drag 
direction are exactly offset by the pressures in the 
thrust direction (Figure 4.6(b)) and therefore, no 
drag exists. Our experience tells us this ideal case 
does not exist. 

In reality, friction robs some of the energy of 
the flow (transforming it into heat and noise). 
When this happens, the flow will have insufficient 
energy and will separate from the airfoil surface. 
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Figure 4.6 

The actual pressure within the separated flow is 
typically random and changes quickly, but averages 
out to be the same as atmospheric pressure. This is 
illustrated as the line for the real fluid in Figure 
4.6(a). 

Since there is not total pressure recovery at the 
trailing edge, a pressure differential will exist 
between leading and trailing edges. This pressure 
differential will produce a retarding force called 
pressure drag (Figure 4.6(c)). For any given 
airspeed, the pressure drag is essentially 
proportional to the size of the wake behind the 
body. The force also increases with the square of 
velocity, (Figure 4.7). 

Figure 4.7 Drag Increase with Velocity 

When the Wright Brothers were designing the 
first airplane, they needed to determine what shapes 
gave the lowest drag. Instead of trying to measure 
the actual drag force in pounds, they placed the test 
article on one end of a weathervane device and 

placed a flat plate on the opposite end at the same 
radial distance. The entire unit was placed inside a 
wind tunnel. The wind was forced through the 
tunnel by a fan after being straightened by a simple 
grid. The straightened flow then blew on the 
weathervane which pivoted about its vertical axis. 
For each shape tested, they increased or decreased 
the size of the flat plate until its drag force was the 
same as the shape. They knew the drag forces were 
equal when the weathervane didn’t move when 
released. With this method they determined the 
"equivalent flat plate area" drag for a great many 
airfoil and propeller shapes, (Figure 4.8). 

Figure 4.8 Equivalent Flat Plate Area 

The Wright Brothers were very careful to 
eliminate unwanted effects. They made sure there 
were no other drafts in the room, and nothing upset 
the delicate test rig. Section 7 of this session 
describes an experiment similar to that performed 
by the Wright brothers. 
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5.0 	Summary 

The students should realize that the total 
change in momentum yields a total force called the 
resultant aerodynamic force (RAF).  This is 
vectorally divided into the more common lift and 
drag forces (Figure 4.9). There is nothing special 
about the drag force, it is still measured as the rate 
of change of momentum - just in the drag direction. 
An aircraft designer tries to arrange the shapes so 
the RAF points in the lift direction as much as 
possible. 

Figure 4.9 Resultant Aerodynamic Force 

Figure 4.10 Overall Drag Equation 

6.0 	Measures of Performance 

1.	 If an object's speed is tripled what happens to 
its drag? 

D = C 1 2
D 2 qV S

ANSWER 
The V 2 effect will generate 9 times the drag. 

2.	 If an airplane flies so high that the air density is 
only 1/10 of sea level density, then how does 
the drag compare? 

ANSWER 
The profile drag is also 1/10 of sea level drag. 

3. What is streamlining? 

ANSWER 
Shaping a body so it changes the flow's 
horizontal momentum as little and as smoothly 
as possible. 

4. Why are some vehicles not streamlined? 

ANSWER 
Other design goals outweigh the importance of 
low drag. 

7.0 	Suggested Activity 

An experiment to demonstrate profile drag can 
be set up with the same idea the Wright Brothers 
used. 

1) 	 A leaf blower or one or two electric fans (in a 
row) can be used for power. (Figure 4.11(a)) 

2) 	 The flow straightener can be made from boxes 
that are used for shipping wine or beer bottles 
or food jars. The cardboard dividers inside can 
be used side-by-side or in a row depending on 
their size. The airflow can be checked for 
straightness by taping a few 3" pieces of yarn 
to the cardboard dividers. (Figure 4.11(b) and 
4.11(c)) 

3) 	 Instead of a weathervane, you can use the front 
wheel of a small (motocross-type) bicycle. The 
wheel must have good quality, well-adjusted 
bearings that rotate freely. The wheel must be 
mounted so that its axle is perfectly horizontal. 
The wheel can be mounted separately or by just 
flipping the bike upside-down and leveling it. 
A bike wheel is used because it is readily 
available and has good bearings. Another 
device with a good axle will work also. (Figure 
4.11(a)) 

4) 	 Attach the test article to the wheel. This can be 
done at the spokes or the rim. Either way, it is 

4.5
 



 

 

 

 

D 

"Static" 
balance 
weight 

W 
"Speed"
weight 

R1 r1 

Session 4
 
Developing Drag
 

Si
de

 v
ie

w
 

H
ea

d 
on

 v
ie

w

(a) (b) 

(c) 

Bike WheelSting 

False sting 
Flow straightening grids 

Fans 

Y
ar

n 
tu

ftsTaped joints 

Cellophane window 

Figure 4.11 

good practice to laterally separate the article 
from the wheel by a couple of inches to avoid 
airflow interference. The separating mount is 
called a sting. The wheel's aerodynamic 
interference can be further minimized by 
wrapping cellophane or mylar around it. 
(Figure 4.11(c)) 

5) 	 Hook a small container (w) to the wheel (at the 
same radial distance as the sting for simple 
calculations). When the test article is at the top 
(directly above the axle), the weight should be 
on some point in front of and horizontal to the 
axle. (Figure 4.12) 

6) 	 Next, the wheel must be statically balanced so 
that it will stay in any angular position in which 
it is placed. If it isn't balanced, then it will 
always have a tendency to rest with the heavy 
side on the bottom. Balancing the wheel is 
easy: when the heavy end rotates to the bottom, 
simply tape some weights near the top of the 
wheel to offset the heavy part. 

7) A useful rectangular wind tunnel can be built 
using cardboard boxes taped together 
end-to-end. The purpose of the tunnel is to 
constrain the air so the fan's energy isn’t wasted 
by blowing around the test region. A powerful 
fan allows the use of a large refrigerator box 
tunnel, but a smaller fan requires a more 
narrow tunnel. Both ends must be open. Fans 
are typically placed so they blow into the 
tunnel, but some are built so the fan "sucks" air 
into it. A slot must be cut in the bottom for the 
wheel. It must be wide enough to allow for the 

test article as well as the wheel. A small flap 
may be employed to close especially wide 
openings. A cellophane window can be cut into 
the side of the tunnel at the test section. To 
prevent the wind from spinning only one side of 
the wheel, the tunnel should be large enough so 
that the entire wheel fits inside (Figure 4.11(a)). 
A false sting (aerodynamically similar to the 
actual sting) should be placed on the wheel 
opposite to the actual sting. 

8) 	 If the tunnel is not large enough for the entire 
wheel, then remove the test article only and 
perform step 6 without the test article. Next, 
submerge as much of the wheel as practical into 
the tunnel and turn on the fan. With the sting at 
the top, place additional "speed weights" on the 
wheel to prevent its rotation (due to wheel and 
sting drag). See Figure 4.12. Speed weight 
balancing must be accomplished for each fan 
speed setting, After balancing, turn off the 
fan and install the test article on the wheel and 
rotate the wheel so the test article is at the top. 
Be sure the article is fixed at the desired angle 
of attack. 

Figure 4.12 
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9) When the fan is turned on, the aerodynamic 
drag on the test article tries to force the wheel 
to turn. This can be prevented by adding some 
weight (lead shot, sand) to the container. 

(r1 - r2 )RM = w 1 - r(R 1
1 - R2 )

If the container is placed at the same radial 
distance as the sting  (R1=  r1), then the weight 
of the sand is exactly equal to the drag force. If 
the distances are different, then;  

= sand weight(HORIZONTAL distance to weight)
Profile Drag VERTICAL distance to sting 

We can use this equation to simplify the 
test procedure: instead of adding and deleting 
mass from the container, slide the hook 
(moment arm) to compensate for profile drag. 

NOTE: 

The test article should be exactly at the top at all 
times, otherwise it’s off-center weight and lift will 
tend to rotate the wheel as well the change in 
aerodynamic drag. 

10) Repeat the test for different angles of attack 
and different shapes, i.e., balls, cylinders, 
model airplanes, flat plates, airfoils, molded 
clay shapes, etc. 

11) If any of the test articles create lift, then they 
will also probably create their own pitching 
moment (M)  that tends to rotate the wheel. If 
precise tests are to be done to eliminate this 
effect, then the test should be repeated with the 
sting at a different radius  (R2) and the same 
balancing weight  (w) at whatever new radius 
(r2) is required to maintain a vertical sting 
position. This twin test gives two equations 
with two unknowns, M and D: 

w  × r1 + M = D × R1 

and 

w  × r2 + M = D × R2   

solving simultaneously yields the profile drag 
and the pitching moment: 

w[r1 - r2 ]
D = [R1 - R2 ] 

With the wheel rotated so the sting is directly in 
front of the axle, weight can be tied to the sting 
to determine the lift of the airfoil section. 
Again, the weight required will be affected by 
the pitching moment. The nose-over moment 
(M) calculated previously can be added to the 
weight to get total lift: 

L = w + M 
horizontal radius to weight 

Once the experiment equipment is established, a 
wide variety of tests can be accomplished: lift, 
drag & pitching moment, measurements; effects 
of different shapes & surface roughness; the 
influence of test article frontal area and 
airspeed on drag. 

Such a matrix of tests would be daunting for a 
single class, but a good local database can be 
established after only a few classes. Of course 
it would be important to be able to recreate the 
same test set-up and retain test article for future 
classes. 

Alternate Approach: 
To avoid the destabilizing effect of the test 

article moving off from the vertical, the test can be 
rigged with the wheel horizontal (vertical axle). 

In this case, the balance weight is connected 
through a string and pulley. As shown in Figure 
4.13. 

The "speed weight" test is performed with all 
parts connected except the test article. When the 
test article is added, any additional weight 
compensates for the profile drag. This test 
apparatus is more elaborate, but is easier to work 
with. 
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Figure 4.13 
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Friction Forces 
Friction forces always act to oppose the motion of one body over another when parts of their 

surfaces are in contact. These forces are caused by the adhesion of one surface to the other and by the 
interlocking of the irregularities of the rubbing surfaces. The magnitude of frictional force depends upon 
the properties of the surfaces and upon the normal force (force perpendicular to the surface). The effects of 
friction are often undesirable, because friction increases the work necessary to do a task, causes wear in 
machinery parts, and generates heat. To reduce this waste of energy, friction is minimized by the use of 
wheels, bearings, rollers, and lubricants. Automobiles and airplanes are streamlined in order to decrease 
air friction. On the other hand, friction is desirable in many cases. Nails and screws hold boards together 
by means of friction. Power may be transmitted from a motor to a machine drive-wheel by means of a 
clutch or a friction belt. In walking, driving a car, striking a match, tying our shoes, or sewing fabric 
together we find friction a useful tool. Cinders or sand are scattered on icy streets, grooves are cut into the 
tires of automobiles and aircraft, and special materials are developed for use in brakes - all for the purpose 
of increasing friction where it is desirable. 

Sliding Friction.  When we slide a box across a floor, we must continually apply a steady 
horizontal force to cause the box to slide uniformly over the horizontal surface. Newton's third law states 
there is a force, parallel to the surfaces in contact, opposing the motion. This opposing force is called 
friction. The frictional force is generally the result of the roughness of the two surfaces in contact, which 
causes interlocking between them. This interlocking gives rise to a force that resists motion. If the applied 
force is just equal to the opposing frictional force, the box will continue to move uniformly; if the applied 
force is greater than the frictional force, the body will accelerate. 

The observations we can make regarding sliding frictional force are these: 

1.	 It is parallel to the surfaces in contact. 

2.	 It is proportional to the force which is normal (perpendicular) to the surfaces which presses them 
together. 

3.	 It is generally independent of the area of the surface contact and independent of the speed of the 
sliding, provided that the resultant heat does not alter the condition of the surfaces or fluids are not 
introduced between the surfaces. 

4.	 It depends upon the properties of the substances in contact and upon the condition of the surfaces, 
e.g., polish, roughness, grain, wetness, etc... 

Sliding friction is sometimes called kinetic friction. 
When one body is in uniform motion on another body, the ratio of the frictional force, F, to the 

perpendicular force pressing the two surfaces together, N, is called the coefficient of kinetic friction, m.  It 
can be expressed by the following equation: 

mk = F/N	 (1) 

When the two surfaces are lubricated, the lubricant fills the surface irregularities, reducing the friction. 
The ratio F/N, however, is no longer a simple constant, but, depends upon the properties of the lubricant, 
the area, and relative speed of the moving surfaces. 

Static Friction.  When a body at rest on a horizontal surface is pushed gently by a horizontal 
force, it does not move because there is a frictional force just equal to the applied force. If the applied 
force is increased slowly, the frictional force increases to oppose motion until a limiting force is reached. 
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If the applied force exceeds the limiting friction force, the body "breaks out" into accelerated motion. The 
coefficient of static friction is the ratio of the "breakout" frictional force to the normal force. 

ms = Fbo/N (2) 

For any two surfaces the coefficient of static friction, ms, is somewhat greater than the coefficient of kinetic 
friction mk. 

Rolling Friction. Rolling friction is the resistance to motion caused chiefly by the deformation 
produced where a wheel, bearing, or roller pushes against the surface on which it rolls.  The deformation of 
an automobile tire in contact with the pavement is readily visible. Even in the case of a steel wheel rolling 
on a steel rail, there is some deformation of the two surfaces. The deformation of the two surfaces produce 
internal friction in the two bodies. The force of rolling friction varies inversely with the radius of the roller, 
and decreases as more rigid surfaces are used. Rolling friction is ordinarily much smaller than sliding 
friction. 

Viscous Friction.  The friction forces encountered by solid objects in passing through fluids and 
the frictional forces set up within liquids and gases in motion are examples of viscous friction.  The laws of 
fluid friction differ greatly from those of sliding and rolling friction. The amount of frictional resistance 
encountered by an object moving through a fluid depends on the size, shape, and speed of the moving 
object, as well as on the properties of the fluid itself. The frictional resistance encountered by a man falling 
through the air increases with his speed until he reaches a terminal speed, about 120 mi/hr, at which time 
the retarding force of friction equals his weight. When he opens his parachute, the greater surface it 
presents increases the retarding force of friction and reduces the terminal speed to 14 ft/sec. 

Viscosity is that property of a fluid, its internal friction, which causes it to resist flow. Viscosity is 
due fundamentally to cohesion and molecular momentum exchange between fluid layers, and, as flow 
occcurs, these effects appear as shearing forces (parallel to the layers) between the moving layers. 
Consider a layer of liquid in a shallow pan, onto which a flat plate, A, is placed, as shown in Figure 1. A 
force F is required to maintain the plate at a constant speed V with respect to the other surface B. On the 
surface of each solid, A and B, there will be a layer of liquid that adheres to the solid and has zero speed. 
The next layer of liquid moves slowly over the first, the third layer moves slowly over the second, and so 
on. This distribution of speeds results in a continual deformation of the liquid. This internal (or viscous) 
friction distorts the cube of fluid, C, into a new shape, R, as the force moves the upper plate. 

5 

4 

3 

2 

1 

A 

B 

V 
F 

C R 

Figure 1 Viscous Friction 

The viscosity of liquids decreases with increase in temperature. A liquid that flows as slowly as 
the proverbial molasses in January at low temperature may pour freely at higher temperature. Lubricating 
oil may fail to form a desired protective film at low temperatures; hence, when starting a car on a cold day, 
it is wise to allow the engine to idle for a time until the oil is warmed. The viscosities of gases, unlike those 
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of liquids, increase with increase in temperature. The internal friction of liquids is attributed to the 
cohesive forces between closely packed molecules. In the case of gases, whose molecules have much larger 
separations, cohesive forces are much smaller and some other mechanism must be sought for internal 
friction. This other mechanism is in the form of a continual migration of molecules from one layer to 
another. Molecules diffuse from a fast-moving layer to a slower moving layer, and from the slower moving 
layer to the faster. Thus each layer exerts a drag on the other proportional to the mass of the molecules and 
their speeds. This description of gas viscosity accounts for the fact that an increase in temperature, which 
increases molecular speeds, results in an increase in the viscosity of a gas. 
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1.0 Definitions 

Compressor - The part of an engine which forces 
the same amount of mass into a smaller volume, 
increasing the air density. 

Combustion - The controlled explosion of a 
fuel-air mixture. 

Disk area - The area described by a propeller as it 
turns through a full circle. 

Turbojet - An engine which has a small intake area 
(for low drag purposes) that greatly compresses the 
air, adds fuel and generates rapid air velocities by 
combustion of the fuel/air mixture. 

Turbofan - A engine which is essentially a large 
fan encased in a shroud mounted on the end of a 
turbojet shaft. 

2.0 Introduction 

The previous sessions have developed three of 
the forces of flight; weight, lift, and drag. Drag was 
shown as the force acting opposite the flight path of 
the aircraft, therefore the opposing force, thrust, 
must act in the same direction as the flight path. 
However, an engine produces a force which acts 
toward the rear of the aircraft. Through an 
application of Newton's third law, this force creates 
an equal and opposite reaction which "thrusts" the 
aircraft forward. For this reason, the force 
produced by the engine is called thrust. This 
session will describe the origins of thrust and 
highlight how various engines produce thrust. 
Thrust may be the most important force because 
regardless of the type of aircraft being studied (or 
tested) ALL need some type of thrust to propel 
them aloft. Even unpowered aircraft such as gliders 
need a tow plane to provide an external force to pull 
the aircraft into the air, where it can obtain airflow 
over the wings to provide the necessary lift to 
remain airborne. Hang gliders use foot power to 
initiate movement prior to "leaping" off a cliff. The 
most common means of developing thrust on 
powered airplanes comes from propellers or jets. 
Both of these types employ the same principle of 
operation involving Newton's second law. 

**START VIDEO** 

3.0 Principles of Thrust 

The explanation of thrust is based entirely on 
Newton's second law. Recall that force equals the 
rate of change of momentum: 

D(mV)
F = Dt (5.1)

Students will recognize the simplified version of 
this law that applies when the mass is constant: 

F = ma 

for thrust analysis, however, we use equation (5.1) 
in another form: 

D(mV) DmF = = F = DV Dt Dt (5.2)

Dm
Dt is known as the mass flow and is sometimes

abbreviated as Q.   is simply the total change in 
velocity of the airflow. 

DV

F = Q DV (5.3) 

The amount of force, or thrust, generated is 
dependent upon two primary factors; 1) the amount 
of mass flow, and 2) the change of the air flow 
speed. 

Each of the primary factors influencing thrust 
can be varied by different means. If more thrust is 
required, either the mass flow can be increased or 
the change in velocity of the air mass as it flows 
through the propeller can be increased. To create a 
given amount of thrust, a large amount of mass 
flow can be accelerated a little or a small amount of 
mass flow can be accelerated a lot. This concept 
was demonstrated in the video by the use of paper 
fans. 

3.1  Propeller Aircraft 
For a propeller powered aircraft, it can be 

proven through the use of the kinetic energy theory 
and the Bernoulli pressure relationship, that the 
total change of the air flow speed (DV) is a function 
of the aircraft's forward speed and the change in the 
speed of the air as it immediately passes through the 
propeller area. This is expressed as: 

= u 2 
DV 2 Du + D (5.4) V 
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The Du is the change in velocity between the 
air in front of the propeller and the air immediately 
behind the propeller, as shown in the video. 

Figure 5.1 Change in Air Velocity 

Directly behind Propeller


 Caution: 

The Du in this relationship should not be confused 
with the total change in velocity, DV, shown in 
equation 5.3. 

The additional velocity imparted by the 
propeller was given in the video to be equivalent to 
a propeller constant, "k" times the engine RPM, 
giving the relationship: 

Du = k (RPM) (5.5) 

NOTE: 
The propeller constant "k," contains the conversion 
factor from "revolutions per minute" (RPM) to 
revolutions per second. "k" is a different constant 
for each given flight speed and propeller design. 

Figure 5.2 Volume of Air 

Mass flow (Q) is dependent upon the density 
speed and area of the air as shown by the 
relationship: 

v= qQ = qAV (5.6)Dt 

Recall the area of a circle or disk is: 

Propeller disk area, od2 
A =  (5.7)4 

If we assume the density of the air and the 
propeller diameter remain essentially constant, then 
equations 5.3, 5.6 and 5.7 can be combined: 

F = od2 
T = QDV = q V(DV)4 

Solely for the purpose of helping students relate 
with accelerations, the video replaced the V(DV) 
product with a "pseudo-acceleration," a: 

= od2 
F T = q a (5.8)4 

If the air's acceleration  (a) is replaced with 
V(DV) [DV shown in equation's 5.5 and 5.4] then 
a = 2 Vk(RPM) + (k RPM)2 . The thrust equation 
identified in the video combine this and equation 5.8 
to get: 

= od2 
F T = q 2 Vk(RPM) + (k RPM)2 

4 (5.9) 
This equation can be quite "messy" therefore, 

an example may clarify the important points. 

**STOP VIDEO** 

Example 1: 
An aircraft has an engine that can turn 2750 

rpm. How much thrust will be generated at 100 
mph (147 feet per second) if the propeller diameter 
is 5 feet and has a "k" value of 0.0044 at an altitude 
where the density is 0.0022 slugs per cubic foot 
(which can also be written as 0.0022 lb sec2

ft4 )? 

Solution:  By directly substituting into equation 5.8 
the thrust can be determined. 

= od2 
F T = q 2 Vk(RPM) + (k RPM)2 

4 (5.9) 
5.2
 



 

 

 

Session 5
 
Thrust
 

= o 2 l 5T 0.0022 s ugs ft2
ft3 4

2{147 ft 
sec (0.0044)(2750 RPM)

+ (0.0044)(2750 RPM)2} 

T = 0.0022 slugs 2[147 ft 
ft sec (12.1) + 146.41]

T = 166 lbs 

Now to show the effect propeller size has on 
thrust, consider a forty percent, that is two feet, 
increase in the propeller diameter. 

Example 2: 
Using the same aircraft in Example 1, how 

much thrust can be generated if the propeller 
diameter is increased to 7 feet? 

Solution: Again by direct substitution into equation 
5.9, the thrust can be determined. 

F = T = qod2
2 Vk(RPM) + (k RPM)2 

4 
(5.9) 

= o 2 l 7T 0.0022 s ugs ft2
ft3 4

2{147 ft 
sec (0.0044)(2750 RPM)

+ (0.0044)(2750 RPM)2} 

T = 0.08467 slugs 2[147 ft 
ft sec (12.1) + 146.41]

T = 325 lbs 

This shows that a 40% increase in propeller 
diameter increased the thrust by 95% as a result of 
an increase in the mass flow. However, this 
increase in thrust creates an unbalanced force in the 
horizontal direction. Recall that in unaccelerated 
flight, thrust and drag must be equal, according to 
Newton's third law. The aircraft will therefore 
accelerate to a new speed where the drag and thrust 
are again equal. This concept will be covered in 
further detail in Session 8. For now let’s see what 
happens when the mass flow is kept the same, that 
is keep the same propeller size, but change the 
acceleration of the air by changing the RPM. 

Example 3: 
Using the same aircraft as in example 1, what 

is the increase in thrust if the propeller RPM is 
increased to 3000? 

Solution: The answer can again be found by direct 
substitution into equation 5.9. 

F = T = qod2
2 Vk(RPM) + (k RPM)2 

4 
(5.9) 

= o 2 l 5T 0.0022 s ugs ft2
ft3 4

2{147 ft 
sec (0.0044)(3000 RPM)

+ (0.0044)(3000 RPM)2} 

T = 0.0432 slugs 2[147 ft 
ft sec (13.2) + 1174.241]

T = 182.7 lbs 

This example shows that a 9% increase in 
RPM (which is really a 9% increase in the change 
of the flow velocity through the propeller) over that 
in Example 1 yields a 10% increase in thrust. 
Highlighted here is the effect of increasing the 
acceleration of the airflow. Comparing this to 
Example 2, it would appear that the most effective 
way to increase thrust is to increase the size of the 
propeller, which really means increase the mass 
flow through the propeller. However, as shown in 
the video, there are practical limits on propeller 
size. These limits come from the fact that propellers 
mechanically accelerate the air. This type of 
acceleration also limits the amount of thrust that 
can be developed. Jet engines, on the other hand, 
use an increase in acceleration of the air to create 
much larger thrust values. 

**START VIDEO** 

3.2 Jet Engines 
In a turbojet engine, the inlet area is small when 

compared to that of a propeller. As a result, there 
is a smaller amount of mass entering the engine. 
Recall previously we assumed the density remained 
constant. Now in the case of a turbojet, in order to 
allow for combustion the air density must be 
increased. This is done by the compressor section 
of the engine, as shown in the video. As the air 
progresses toward the rear of the engine, it is forced 
into the smaller and smaller spaces between the 
blades of each compressor ring. This compacting 
of the air results in an increase in the air pressure 
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and density as well as an increase in the air 
temperature. 

nor a fast. Both of these limitations are the result 
of propeller inefficiencies.

Figure 5.3 Jet Engine Compressor 

As the air exits the compressor section of the 
engine, it enters the combustion chamber where fuel 
is added. This densely packed air/fuel mixture is 
ignited and the resultant "explosion" accelerates the 
gases out the rear of the engine at a very high rate 
of speed. This chemical acceleration of the air 
(combustion) adds to the thrust produced by the 
engine. Most jet fighters have a system called 
afterburners, which adds raw fuel into the hot jet 
exhaust generating even more thrust through higher 
accelerations of the air. 

So the jet generates large amounts of thrust by 
chemically accelerating the air as the result of 
combustion. The fact that the jet compresses the 
air as much as 40 times (depending upon the 
number of compressor rings) allows the jet aircraft 
to fly at higher altitudes where the air is too thin for 
propeller driven aircraft to fly. These altitudes 
permit the jet aircraft to fly over most weather 
systems giving passengers a smoother ride. There 
is a price to pay for the ability to fly at higher 
speeds and altitudes. That price comes in the form 
of higher fuel consumption, or in more everyday 
terms, lower fuel mileage. 

One type of engine is a combination of both the 
turbojet and a propeller called, appropriately, a 
turboprop. A turboprop is a small turbojet engine 
which turns a propeller. The turboprop uses the 
jet's ability to compress the thin air found at higher 
altitudes combined with the larger volume of air 
associated with a propeller to produce modest 
amounts of thrust at medium altitudes. Although it 
burns less fuel than a turbojet, it cannot fly as high, 

As stated earlier, air density decreases as 
altitude increases. Since propellers are simply 
airfoils, they have a tendency to become less 
effective as the air gets thinner. Additionally, 
although Examples 2 and 3 proved that increasing 
the prop size and speed increased thrust, as 
propellers get bigger and turn faster, the tips begin 
to reach supersonic speeds. At these tip speeds, 
shock waves begin to develop and destroy the 
effectiveness of the prop. It would seem, therefore 
that the most efficient engine would be a 
combination of the turbojet and a large, slow 
turning prop. In recent days, these engines have 
been developed and are called "high by-pass ratio 
turbofans." 

The engines use a turbojet as a "core" to serve 
two purposes: 1) produce a portion of the total 
thrust, and 2) to turn a huge fan attached to the 
main shaft. The engine can operate at higher 
altitudes because the jet core can compress the thin 
air. The thrust produced by the core is 
supplemented by having a VERY large fan section 
attached to the main shaft of the core. The fan 
draws in huge amounts of air and therefore can turn 
slow enough to prevent the flow at the blade tips 
from becoming supersonic. The overall result is: 1) 
the fan mechanically generates a little acceleration 
to a large amount of air mass, and 2) the jet core 
compresses thin air and chemically generates large 
accelerations to relatively small amounts of air. 
Since the fan is mounted to the same shaft as the 
core, the by-pass ratio of these engines is 
determined by dividing the amount of air flowing 
through the fan blades by the amount of air passing 
through the engine core. This can be written as: 

(area of fan - area of core)
ratio = area of core 

Consider the following example using the G.E. 
90 engine shown in the video. 

Example 4: 
If the  G.E. 90 engine has a fan diameter of 

10.25 feet, and a core diameter of 3.34 feet, what is 
the bypass ratio of the engine? 
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Figure 5.4 GE 90 Engine 

Solution:  The area of the fan is: 

= od
2 

A 4 

= o10.252ft A 4 
A = 82.52 ft  2 

The area of the core is: 

= o3.342ft A 4 
A = 8.78 ft  2 

Then the bypass ratio is: 

(82.52ft2 - 8.78ft2 )
ratio = 8.78ft2 

ratio = 8.4 to 1 
This means over eight times as much air moves 

around the outside of the engine as moves through 
the engine. Since this air is producing thrust but 
NOT using fuel directly, the efficiency of the engine 
is greatly increased. 

4.0 Summary 

As we have seen, whether an aircraft has a 
propeller, a turbojet, or a turbofan, all of these 
produce thrust by accelerating a mass of air to the 
rear of the aircraft. Let’s finish this session by 
proving that the movement of this air to the rear 
creates an unbalanced force pushing the aircraft 
forward. In the video, a balloon was used to show 
how when the pressure is equal in all directions 
there is no net force. 

Figure 5.5 Equal Forces in the Balloon 

However, when the stem is released, the air 
escaping from the balloon causes an unbalanced 
force at the front of the balloon, propelling the 
balloon forward. The same principle applies to the 
thrust produced by an aircraft engine. The 
unbalanced force propels the aircraft forward, 
creating airflow over the wings which generate lift, 
causing the aircraft to become airborne. The first 
step to getting airborne is the takeoff, which it just 
so happens is the topic of the next session. 

5.0 Measures of Performance 

1	 What is the basic principle of operation behind 
thrust? 

ANSWER 
Newton's second law; force equals the rate of 
change of momentum. 

2	 What are the two primary factors which 
determine the amount of thrust which can be 
generated? 

ANSWER 
1) The amount of mass flow 
2) The change of the air velocity behind the 

rear of the engine. 

3	 What are the two ways the thrust can be 
increased on a propeller driven aircraft? 

ANSWER 
1) Increase the size of the propeller.
 
2) Increase the RPM of the propeller.
 

4	 By what means does a propeller accelerate an 
air mass? 
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ANSWER 
Mechanical 

5	 By what means does a jet accelerate an air 
mass? 

ANSWER 
Chemical or combustion 

6	 What makes a turbofan engine so efficient? 
ANSWER 

A smaller turbojet core permits flight at higher 
altitudes while burning a small amount of fuel. 
The large fan is connected to the same shaft as 
the jet and therefore turns while the jet 
compressors turn. These large fans turn slightly 
slower while accelerating large amounts of air. 
This increases the thrust of the engine while not 
burning any fuel. 

6.0 Problems 

1	 A propeller driven aircraft requires 200 pounds 
of thrust to fly at 110 miles per hour (161.4 
ft/sec). If the engine is capable of turning at 
3000 RPM, and the propeller constant (k) is 
0.005, how large does the propeller have to be 
to fly at an altitude where the density is 0.0021 
slugs/ft3? 

ANSWER 
By rearranging equation 5.9, all the information 
is given to solve directly for the propeller 
diameter. 

= od2 
F T = q 2 Vk(RPM) + (k RPM)2 

4 
(5.9) 

rearranging to solve for "d" yields: 

= 2Td 
qoVk(RPM) + (k RPM)2 

Now if we let Vk(RPM) = x and K RPM = y, 
solving for x and y gives: 

x = Vk(RPM) 
x = (161.4 ft 

sec )(0.005)(3000RPM)
x = 2421 ft 

sec 

y = k RPM 
y = (0.005)(3000RPM) 
y = 15 ft 

sec 

= 2Td 
qox + y2 

2(200lbs) 
d = 

0.0020 slugs 
ft3 (3.14) 2421 ft t 

se + (15 f 2 
c sec )

d = 4.8 ft 

2	 What is the size of the "fan" portion of a 
turbofan engine if the core has a diameter of 
2.75 feet and the by-pass ratio is 6.3:1? 

ANSWER 
Rearranging the relationship 

(area of fan - area of core)
ratio = area of core 

to solve for the fan area gives: 

Afan = {(ratio) x (Acore)} +  Acore 

Then the area of the core is: 

= od
2 (3.14)(2.75)2 

Acore = 4 4 
A  

core = 5.94 ft 2 

By substitution into the relationship shown 
above: 

Afan = {(6.3) x (5.94 ft)} +  5.94 ft 
A  

fan = 43.4 ft 2 

Then substituting into the equation for the area 
of a circle, the fan diameter is determined: 

= od
2 

A 4 

d = 4A
o 

4(43.4ft2 )
d = 3.14 

d = 7.4 ft 
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1.0 Definitions 

Coefficient of friction (m) - A measure of the 
resistance to movement of two surfaces which are 
in contact. 

Takeoff distance - The distance required to 
accelerate an aircraft to takeoff speed 

Takeoff speed - The speed where the wings of 
an aircraft generate enough lift to just equal the 
weight of the aircraft. 

2.0 Introduction 

Previous sessions have applied Newton's Laws 
to the forces of flight; weight, lift, drag and thrust. 
In this session, those same laws are applied to 
determine the takeoff performance of an aircraft. 
The primary consideration when analyzing takeoff 
performance is measuring the distance required to 
become airborne. In other words, determining the 
distance required to accelerate a stopped aircraft to 
an airspeed where the wings can generate enough 
lift to cause the aircraft to become airborne. This 
evaluation begins by considering the four forces 
associated with the test aircraft. 

**START VIDEO** 

3.0  Test Aircraft Description 

Whenever a test report is written about an 
aircraft, the first thing given is a description of the 
test aircraft. In the video, the test aircraft is the 
Aermacchi MB-326 Impala jet trainer. 

Figure 6.1 Impala Jet Trainer 

This aircraft is used by a number of air forces 
throughout the world and is used as a flight test 

trainer at the National Test Pilot School. The 
aircraft has the following features: 

1. Weight: 7887 pounds (includes pilots and fuel) 
2. Wing Area: 205.33 square feet 
3. Maximum Lift Coefficient: CL max = 1.51 
4. Static maximum thrust at Mojave Airport: 	2200 

pounds 
5. Drag coefficient: CD = 0.06 

NOTE: 
The air density (r) at Mojave Airport is usually 
about 0.0022 slugs per cubic foot. 

This information is necessary to calculate the 
takeoff performance. 

4.0 Determining the Takeoff Speed 

The minimum lift required for flight, that is to 
just become airborne, occurs at a speed where the 
lift and weight just become equal. 

NOTE: 
At speeds above that where the lift and weight 

just become equal, the aircraft will be able to climb 
or accelerate. At speeds below this there will not be 
enough lift generated to become airborne. 

To calculate the takeoff speed for the Impala, 
begin with the lift equation. 

w = L = 1
2 pV 2SCLmax (6.1) 

Taking the numbers from the aircraft 
description above and rearranging Equation 6.1, the 
speed to just become airborne, that is the takeoff 
speed, is found by the following: 

= 2wV pSCL 

2(7887lbs)
V = 

0.002 slugs (205.33ft2
ft )(1.51)

3 

V = 152.1 ft/sec (or 90 knots) 

To propel the aircraft forward to achieve this speed, 
the aircraft must have enough thrust to overcome 
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the drag. 

5.0 Determining the Drag 

Session 4 demonstrated that drag varies with 
speed. Recall the drag equation is written as: 

D = 1
2 pV 2SCD (6.2) 

However, as the aircraft accelerates for takeoff, 
the speed is constantly changing so what speed is 
entered into equation 6.2? Through experience, 
engineers have learned that if 70% of the takeoff 
speed is used to calculate the drag during takeoff, 
the results are very close to the actual drag. The 
takeoff speed for the Impala has just been 
calculated at 152.1 feet per second. Then to 
calculate the drag, a value of 106.5 feet per second 
(70% of 152.1) is used in equation 6.2. Using the 
values for density, drag coefficient and wing area, 
the drag which must be overcome during the takeoff 
is: 

D = 1
2 pV 2SCD 

D = 1 
2 0.0022 slugs (106.5 ft )2

ft3 sec (0.06)

D = 153.7 lbs 

This drag must be subtracted from the total 
thrust, since these forces act in opposite directions. 
Additionally, since the thrust and drag are not 
equal, the unbalanced force (thrust) will cause the 
aircraft to accelerate. To determine the rate of 
acceleration, Newton's second law is used. 

6.0  Determining the Acceleration 

To calculate the acceleration rate from the F = 
ma equation, the forces must be inserted. 

F = T - D = ma 

This equation can be rearranged to solve for the 
acceleration: 

= T - Da m (6.3) 
Recall from session 2 the mass is the aircraft's 

weight divided by the acceleration of gravity: 

m = w/g 
Then inserting this into equation 6.3 gives: 

= g
(T - D) 

a w (6.4)

Using the appropriate values from the test 
aircraft description: 

32.2 ft 
sec2 (2200lbs - 153.7lbs) 

a = (7887lbs) 

a = 8.35 ft/sec2  

This acceleration rate can be used as the slope 
of a straight line to construct a graphic plot of 
velocity (in feet/second) versus time (in seconds). 
Assuming this acceleration rate is constant, at the 
end of one second, the velocity is 8.35 ft/sec; at the 
end of 2 seconds, the velocity is 2 times 8.35, or 
16.7 ft/sec. This method can be continued for as 
long as desired, but since the velocity at takeoff has 
already been calculated from equation 6.1 and 
found to be 152.1 ft/sec, then if the speed is divided 
by the acceleration rate, the time required to reach 
that speed can be determined. 

takeoff speed 
time = acceleration rate 

152.1 ft 

time = sec 

8.35 ft 
sec2 

time = 18.21 sec 

To construct the graph, perform the following: 
- at time zero the speed is zero, then place a 
dot at the origin 
- place another dot at the point where the 
speed is 152.1 ft/sec and the time is 18.21 sec 
- connect the two dots 

Figure 6.2 Plot of Velocity vs. Time 
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The predicted takeoff distance is simply the area 
under the line which was just drawn. 

7.0  Determining the Takeoff Distance 

Since a, the acceleration, is assumed to be 
constant, the resulting slope is a straight line. It can 
be seen in Figure 6.1 that by locating the point on 
the line associated with the takeoff speed then 
dropping straight down to the times axis, the area 
under this curve is equal to the area of a right 
triangle. The equation for the area of a right 
triangle is: 

area = 1 
2 (base % height)  = takeoff distance 

The base of the acceleration plot is the "time" 
axis and the height is the "velocity axis.”  By 
substituting into the equation the appropriate values 
from the curve, the area is found to be: 

area = 1 [(18.21 sec)(152.1 ft 
2 sec )] 

area = takeoff distance = 1384.9 feet 

Then the calculated takeoff distance is 
approximately 1385 feet. The actual takeoff 
distance exceeded the predicted distance by a 
considerable amount. 

Figure 6.3 Takeoff Distance 

Determination from Chase Aircraft
 

After the flight, the test team realized they had 
forgotten to account for the rolling friction of the 
aircraft. 

8.0 Rolling Friction 

NOTE: 

Further explanation of rolling friction can be found 
in Session 4's Operational Supplement. 

It takes much less force to push a hockey puck 
across the ice than it does to push that same puck 
across asphalt. This is because there is less friction 
to resist the movement of the puck when it is 
pushed across the ice. Air hockey games blow air 
up through holes in the table surface so the puck 
then rides on a cushion of air. This eliminates 
almost all the friction allowing the puck to move 
with very little force applied. Each type of surface 
has certain friction factor called the "coefficient of 
friction" and given the Greek symbol "m". This 
coefficient has been determined experimentally for 
each type of surface and the values placed in a 
table. In this application, the coefficient for rubber 
tires on a concrete runway is approximately 0.05. 

The force required to overcome friction and 
move an object depends on the object's weight and 
the surface on which it rests as shown in the 
following equation: 

Friction = mw (6.5) 

Then for the Impala on a concrete runway, the 
friction force which must be overcome before 
movement can begin is: 

Friction = (0.05)(7887 lbs) 
Friction = 394.4 lbs 

Since the rolling friction resists movement, it 
actually acts in the same direction as the drag and 
must therefore be subtracted from the thrust. 
Including the friction into equation 6.4, the new 
acceleration can be calculated: 

g(T - D - Friction) 
a = w (6.6)

32.2 ft 
sec2 (2200lbs - 153.7lbs - 394.4lbs) 

a = 7887lbs 
a = 6.74 ft/sec2 
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This acceleration rate is significantly slower 
than the 8.35 ft/sec2 rate determined earlier. Using 
this new acceleration rate as the slope, a new curve 
can be generated in the same manner as the 
previous acceleration curve. The takeoff speed will 
remain the same since the speed depends on the 
aircraft weight, which hasn't changed. The final 
point then corresponds to a time of 22.6 sec. 

Figure 6.4 Plot of Speed vs. Velocity 

NOTE: 

The time required to accelerate to the takeoff speed 
can also be found using the following relation: 

velocity 
time = acceleration rate 

(152.1 ft )
time = sec 

6.74 ft 
sec2 

time = 22.6 sec 

To calculate the revised takeoff distance using the 
same relationship as before (recall the area for a 
right triangle), the distance should be:

area = 1 
2 (base % height) = takeoff distance 

area = 1 
2 [(22.6 sec)(152.1 ft 

sec )] 

takeoff distance = 1718.7 feet 

A subsequent takeoff test revealed the takeoff 
distance to be approximately 1750 feet so the 
theory appears correct. 

Figure 6.5 Takeoff distance 
determination from chase aircraft 

9.0 Summary 

Takeoff performance is mainly concerned with 
the distance required to accelerate the aircraft to a 
speed where the lift just begins to exceed the 
weight. The weight, drag and thrust of the aircraft 
are used in the F = ma equation to determine the 
acceleration rate. Neglecting the rolling friction 
yields an acceleration rate which is too high, since 
the friction acts as a drag force. Assuming the 
calculated acceleration rate is constant, it is used as 
the slope of a line on a graph of speed versus time. 
The lift equation determines the takeoff speed and 
the time required to accelerate to that speed is found 
by intersecting the acceleration line at that speed 
and dropping down to the "time" axis. The area of 
the triangle formed by this procedure is equal to the 
takeoff distance. 

Warning: 

In all of the above calculations, there has been 
more thrust available than required. In other words, 
there is excess thrust available. This excess thrust 
is used to accelerate the aircraft above takeoff 
speed and is also used to allow the aircraft to climb. 

Once the aircraft finally becomes airborne, it 
begins to climb to altitude. The forces involved in 
climbs and descents are the subject of the next 
session. 
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10.0 Measures of Performance 

1 	 Define "takeoff speed." 

ANSWER 
The speed where the lift generated just equals 
the weight of the aircraft. 

2	 Why do engineers use 70% of the predicted 
takeoff speed to determine the aerodynamic 
drag during the takeoff? 

ANSWER 
The drag is a function of speed, and the speed 
is constantly changing during the takeoff roll. 
Experience has shown that a speed of 70% of 
the takeoff speed provides a good estimation of 
the average drag encountered during the 
takeoff. 

3 	 Why is the acceleration rate the slope of a line 
on the graph of velocity versus time? 

ANSWER 
By definition, acceleration is the rate of change 
of velocity for a given time period. In this 
application the acceleration is assumed to be 
constant, therefore the slope is a straight line. 

4 	 Why does rolling friction increase the takeoff 
distance? 

ANSWER 
Friction is an additional term which acts in the 
same direction as the drag. Since this is 
opposite the thrust, the amount of friction must 
be subtracted from the thrust. The resulting 
lower thrust decreases the acceleration rate, 
increasing the takeoff distance. 

5 If an aircraft only has enough thrust to accelerate 
it to takeoff speed, what is the consequence? 

ANSWER 
There is no excess thrust, the thrust exactly 
equals the drag and friction, therefore the 
aircraft cannot accelerate or climb. 

11.0 Example 

Problem: 
Determine the takeoff distance for an aircraft 

with the following characteristics: 

Weight (w): 18,500 lbs
 
Thrust (T): 6000 lbs
 
CLmax:  1.15
 
CD: 0.05
 
Wing area (S): 342 ft2
 

Coefficient of friction (m): 0.06
 
Air density (r): 0.0023 slugs/ft3
 

Solution:
 
Step 1: Determine the takeoff speed.
 

w = L = 1
2 pV 2SCL (6.1) 

= 2wV pSCL 

2(18, 500lbs)
V = 

(0.0023 slugs (342ft2
ft3 )(1.15)

V = 202.2 ft/sec (or 119.7 knots) 

Step 2:  Determine the drag by using the drag 
equation and 70% of the takeoff speed calculated 
in step 1. 

V = 0.7 (202.2 ft/sec) 

V = 141.5 ft/sec 

D = 1 
2 pV 2SCD (6.2) 

D = 1 
2 0.0023 slugs ft 2 2 

ft3 (141.5 sec ) (342ft )(0.05)

D = 393.7 lbs 

Step 3:  Determine the friction force based on the 
aircraft weight and a coefficient of friction of 0.06. 

Ffriction = (m) w 
Ffriction = (0.06) (18,500 lbs) 

Ffriction = 1100 lbs 

Step 4: Determine the acceleration by subtracting 
the forces calculated in steps 2 and 3 from the total 
thrust. 

F = ma 

F = = wT - D - Ffriction g a 
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a = g 
w F = (T - D - Ffriction ) 

32.2 ft 

a = sec2 (6000lbs - 393.7lbs - 1100lbs)
(18, 500lbs) 

a = 7.84 ft/sec2 

Step 5:  Determine the time required to accelerate 
to the takeoff speed. 

takeoff speed 
time = acceleration rate 

202.2 ft 

time = sec 

7.84 ft 
sec2 

time = 25.79 sec 

Step 6:  Determine the takeoff distance assuming 
the acceleration calculated in step 5 is a constant. 

NOTE: 
This assumption results in a straight line slope 

which permits the use of the right triangle formula 
to calculate the area under the curve. 

area = 1 
2 (base % height) 

takeoff distance = 
1 
2 (takeoff speed % time to reach takeoff speed) 

area = 1 (25.79 sec) % (202.2 ft 
2 sec )

area = takeoff distance = 2607.5 ft 

Problem 1: An aircraft with the following 
characteristics is operated from a runway 3000 feet 
long. Can the aircraft takeoff ? 

Weight (w): 1800 lbs 
Thrust (T): 850 lbs 
CL max:  1.21 
CD: 0.05 
Wing area (S): 48 ft2 

Coefficient of friction (m): 0.03 
Air density (r): 0.0021 slugs/ft3 

ANSWER 
Step 1: Determine the takeoff speed. The lift 
equation is used since this is the speed where the lift 
is just equal to the weight. 

w = L = 1
2 pV 2SCL (6.1) 

= 2wV pSCL 

2(1800lbs)
V = 

0.0021 slugs (48ft2 )(1.21)
ft3 

V = 171.8 ft/sec (or 101.7 kts) 

Step 2:  Determine the drag by using the drag 
equation and 70% of the takeoff speed calculated 
in step 1. 

V = .7 (171.8 ft/sec) 
V = 120.3 ft/sec 

D = 1 
2 pV 2SCD (6.2) 

D = 1
2 0.0021 slugs ft 2 2

ft3 (120.3 sec ) (48ft )(0.05)

D = 36.4 lbs 

Step 3:  Determine the friction force based on the 
aircraft weight and a coefficient of friction of 0.03. 

Ffriction = (m) w 

Ffriction = (0.03) (1800 lbs)
 
Ffriction = 54 lbs
 

Step 4: Determine the acceleration by subtracting 
the forces calculated in steps 2 and 3 from the total 
thrust. 

F = ma 

F = = wT - D - Ffriction g a 

g 
a = (w T - D - Ffriction ) 

32.2 ft 

a = sec2 (850lbs - 36.4lbs - 54lbs)
1800lbs 

a = 13.59 ft/sec2 

Step 5: Determine the time required to accelerate to 
the takeoff speed. 
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takeoff speed 
time = acceleration rate 

171.8 ft 

time = sec 

13.59 ft 
sec2 

time = 12.64 sec 

Step 6: Determine the takeoff distance assuming 
the acceleration calculated in step 5 is a constant. 

NOTE: 

This assumption results in a straight line slope 
which permits the use of the right triangle formula 
to calculate the area under the curve. 

area = 1 
2 (base % height) 

area = 1 (12.64 sec) % (171.8 ft 
2 sec )

area = takeoff distance = 1085.9 feet 

YES; there is enough runway to takeoff. 

Problem 2: How much thrust is required to takeoff 
on a 3500 foot runway if an aircraft has the 
following characteristics: 

Weight (w): 3500 lbs 
Thrust (T): ? lbs 
CL: 1.21
 
CD: 0.05
 
Wing area (S): 90 ft2
 

Coefficient of friction (m): 0.03
 
Air density (r): 0.0021 slugs/ft3
 

ANSWER 
Step 1:  Determine the takeoff speed. 

w = L = 1
2 qV 2SCL (6.1) 

= 2wV qSCL 

V = 175 ft/sec (or 103.6 knots) 

Step 2:  Since the takeoff distance must be at least 
3500 feet, the acceleration can be determined from 
the following relationship: 

area = 1
2 (base % height) 

area = takeoff distance 

takeoff distance = 
1 
2 (takeoff speed % time to reach takeoff speed) 

3500 feet = 1/2 (175 ft/sec)(time) 
time = 40 sec 

Since the time required to accelerate to takeoff 
speed is defined as: 

takeoff speed 
time = acceleration rate 

Then the acceleration rate is found by: 

takeoff speed 
acceleration rate = time 

175 ft 

a = sec 
40sec 

a = 4.38 ft/sec2 

Step 3.  Calculate the friction force: 

Ffriction = (0.03) (3500 lbs)
 
Ffriction  = 105 lbs
 

Step 4: Determine the drag by using the drag 
equation and 70% of the takeoff speed calculated 
in step 1. 

V = 0.7 (175 ft/sec) 


V = 120.3 ft/sec
 

D = 1 
2qV 2SCD (6.2) 

D = 1 
2 0.0021 slugs ft 2 2

ft3 (120.3 sec ) (90ft )(0.05)

D = 68.4 lbs 

Step 5: Determine the thrust required by 
rearranging the F = ma equation. 

F = ma 
wF = T - D - Ffriction = g a 

wT = (g a) + D + Ffriction 

= 3500lbs T 4.38 ft 
ft sec2 + 68.4lbs + 105lbs 

32.2 sec2 
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T = 649.6 lbs 

NOTE: 

This thrust will EXACTLY equal all of the 
opposing forces. Therefore, the aircraft will never 
accelerate beyond takeoff speed. In order for the 
aircraft to climb or accelerate, MORE thrust is 
required. 
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1.0  Definitions 

Rate-of-climb - The straight-up vertical velocity, 
measured in feet per second. The abbreviation for 
rate-of-climb is RC. 

Climb angle - The number of degrees between the 
horizon and the flightpath of the aircraft.  The 
abbreviation for climb angle is the Greek letter 
gamma, g. 

2.0  Introduction 

The climb performance of an aircraft is an 
important safety of flight consideration as it 
determines the capability of the aircraft to clear an 
obstacle after takeoff, enroute terrain avoidance, 
and go-around capability from an aborted landing. 
Due to the safety of flight considerations, the 
Federal Aviation Administration (F.A.A.) has 
minimum angle of climb criteria for those flight 
modes close to the ground such as takeoff and 
landing and also for the engine out (emergency) 
phase of flight for multi-engine aircraft. 

Figure 7.1 Takeoff 

3.0 Theory 
From basic trigonometry, 

sin g = RC/V   

Figure 7.2 Climb Angle 

Video Example: aircraft is flying at 200 knots [or 
338 ft/sec].  If the climb angle is 10 degrees, then 
RC = V sin g= 338[ft/sec] sin 10° = 58.7[ft/sec] 

3.1 Simplifying Assumptions 

The first simplifying assumption is used only at 
the basic level to illustrate the principle factors in 
climb performance: The aircraft's angle of attack 
is small. 

Figure 7.3 Angle of Attack is Small 

NOTE: 

A non-trivial angle of attack complicates the 
equations a bit, but is used for all accurate analysis:
 Summing up the forces along the direction of the 
flightpath, the tilt of the thrust line must be 
included: 

7.1
 



    

        

   

  

    
 

     g= sin-1  0.1428 = 8.2o 

Session 7
 
Climb and Descent Performance
 

Thrust 

Flightpath
D 

V 

RC w g 

a 

The aircraft is climbing at a constant speed  so 
that DV/Dt = 0. 

With no mass or velocity change, the sum of 
the forces is zero: 

Figure 7.4   SF = T cos  a  - D - w sin  g  T  -  D  -  w sin g= 0 or [T  -  D]/w  =sin  g. 

The numerator [T - D] is called the excess
thrust because it is the extra thrust available after 
the aircraft's drag is overcome. 

Along the flightpath: 
SF = T cos a - D - w sin g 

Figure 7.5 Mass is Constant 

The next  simpifying assumption:  The 
aircraft's mass is constant  is quite reasonable for 
all propeller aircraft and most jets.  This 
assumption simplifies the equation to: 

T - D - w  sin g= m DV/Dt 

Figure 7.6 Airspeed is Constant 

The equations used if the "constant mass" 
assumption is not valid, can be found in the "energy 
method" section of this guide. This section also 
shows how to look at a plane's ability to climb and 
accelerate at the same time. To avoid complication, 
the video made a third simplifying assumption: 

The video stated that there are several ways to 
measure the drag; it repeated the method in Session 
4 with the glider and calculated its drag at a 
particular airspeed. This gliding test works great 
on sailplanes, but not on big airplanes because it 
isn't safe to shut down all the engines. In this case, 
flight testers use knowledge of engine thrust which 
is opposite to the drag force. The thrust prediction 
provided by the manufacturer is usually very 
complicated, but a simplified version was used in 
the video.

 Figure 7.7 Thrust Prediction 

At any one altitude, the thrust changes just a 
little as the airspeed increases. For any given 
airspeed, the thrust gets smaller as altitude 
increases. For the example in the video, the flight 
condition was 300 ft/sec and 5,000 feet altitude. 
The thrust was 1000 lbs., the drag was 400 lbs. 
and the aircraft weight was 4200lbs.  Putting all of 
this together gave: 

[1000 lbs. -  400 lbs.]/4200 lbs. = sin g 
or 0.1428 = sin  g 

solving for ggave 
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The above relation for sin  gcan be inserted into the 
rate-of-climb equation (RC = V sin g) to give 

Climb Rate Equation: 

[T - D]
RC = V w 

so, RC = 300 ft/sec (0.1428) = 42.8 ft/sec. 

3.2 Climb Rate vs Velocity 
Drag increases with the square of velocity. 

Compare the drag to the engine thrust available at 
sea level. The vertical distance between the two 
curves is the excess thrust, F - D. As the airspeed 
increases, the excess thrust gets smaller and 
smaller. At very low speeds there is a lot of excess 
thrust, but the velocity is small, so the climb rate is 
moderate. At medium speeds, there is not quite as 
much excess thrust, but multiplying it by the higher 
speed gives a good climb rate. Finally, at high 
speed, the excess thrust is very small. Even though 
the speed is high, the product of the two yields a 
poor climb rate. This should sound reasonable 
since most of the available thrust is needed just to 
overcome the drag, leaving little excess thrust for 
climbing. 

Figure 7.8 Execss Thrust 

To determine the altitude effect on climb 
performance, first go back to the engine chart. 
Since the air is less dense at high altitude, the 
maximum thrust of the engine will also be less. At 
23,000 feet where the density is half of that at sea 
level, the thrust will also be about half of the 
sea-level value. Of course, the profile drag will 
also be about half of the sea-level value. Since both 
the thrust and drag are reduced by 50%, then the 
excess thrust reduction will be the same. Finally, 

the climb rate and angle will be about half of the 
sea level climb capability. 

4.0 Power Method

 Climb performance is directly related to the 
excess power available.  This is the difference 
between the power required for level flight and the 
power available from the propulsion system at a 
particular airspeed and density altitude. The video 
showed that climb performance is a function of 
excess thrust available, which is also true.  The 
connection between the two is quite simple:  thrust 
times velocity equals power (P = TV). 

The video showed that climb rate is
[T- D]

w RC = V [T- D] 
w where  is the specific excess 

thrust. Climb rate is velocity times specific excess 
thrust or simply specific excess power.  In a similar 
fashion, since the sine of the climb angle is the 
specific excess thrust, then it is also the specific 
excess power divided by the speed. 

= F - D (F - D)V 1sin c w = w V 

Figure 7.7 illustrates this for both a jet and a 
propeller aircraft. The excess power can be used to 
either climb or accelerate the aircraft; therefore, 
knowledge of the excess power available at each 
altitude and airspeed will define the aircraft climb 
performance, level acceleration performance, or any 
combination of the two. Conversely, measurement 
of the climb and/or acceleration performance of an 
aircraft will define the specific excess power. 

Figure 7.9 Maximum Rate of Climb, Prop and Jet 
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5.0 Energy Method for Climb Performance 

If an energy approach is used where the total 
energy of an aircraft is expressed as the sum of the 
potential and kinetic energy, basic physics states 
that a change in energy requires that work be done 
(Figure 7.8). 

w 

Energy 
Change 
Requires 
Workw 

H H 

To measure the excess power available at any 
altitude, it is necessary to measure the rate of climb,
dH 
dt 

dV 
dt . The

common technique is to keep one of the variables 
constant and measure the rate of change of the 
other.  The excess power can thus be measured by 
the  rate of climb (sawtooth climb)  test or by the 
level acceleration.  The term  "sawtooth" climb is 
used to describe a series of climbs where the pilot 
climbs through an altitude band at some constant 
airspeed (so that 

and the flight path acceleration, 

dV 
dt = 0), then descends, then 

repeats the climb at another constant airspeed and 
so forth. 

Figure 7.10 Power Available - Physics

 The rate of change of energy requires the 
application of power which is the work done per 
time interval. Since the total energy of the aircraft 
is changed by the excess power available then: 

Excess Power Available 
= d [Potential Energy + Kinetic Energy]dt 

= d wwH + V 2dt 2g

dH/dt 

Figure 7.11 Sawtooth Climb Technique 

During each climb, the pilot records the airspeed 
and weight and times the ascent with a stopwatch to 
get the climb rate. The results of a series of 
sawtooth climb tests can be plotted as shown in 
Figure 7.11. 

= dH dV dw w + dw H + wV dt dt g + V2 

dt 2g dt 

This complete equation is needed for rockets and 
aircraft with extreme fuel flow rates such as the 
F-22 in full afterburner. For most general aviation 
commercial transport aircraft however, the rate of 
change of weight ds 

dt is very small and can be
neglected with the result that: 

= dH dV Excess Power  XsP = w + wV 
dt g dt 

where dH 
dt 

dV 
dt is the time rate of change of altitude, 

is the time rate of change of true velocity in ft/sec 
and V is the velocity in ft/sec  The unit of power is  
ft-lb per second.  Since an aircraft has a fixed 
amount of excess power at any given flight 
condition, this equation can be used to show the 
plane's ability to climb at constant velocity, 
accelerate at constant altitude, or some combination 
of both climb and acceleration. 

Figure 7.12  Plot of Sawtooth Climb Data 

6.0 Data Analysis 

When the rate of climb data is taken at different 
altitudes, corrected it can be presented as seen in 
Figure 7.11.  The top of each curve gives the 
maximum rate of climb at particular altitudes and 
the speed that must be held to obtain that maximum 
rate of climb. The tangents from the origin give 
the velocities for the maximum angle of climb.  The 
speeds for maximum angle of climb and maximum 
rate of climb are defined as Vx and Vy respectively. 
A typical plot of the variation of Vx and Vy with 

7.4
 



 

 

 

 

    

  

Session 7
 
Climb and Descent Performance
 

altitude is given in Figure 7.12 where it can be seen 
that at the absolute ceiling of the aircraft Vx = Vy. 

angle. Note that the climb angle is directly related 
to the specific excess thrust. 

R
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Airspeed 

[T - D]/w = sin g 
And finally, combining these two gave the rate of 
climb equation. Note that the climb rate is directly 
related to the specific excess power. 

RC = V[T - D]/w 

Figure 7.13  Climb Data as a Function of Altitude Examples 5.1 and 5.2 in the textbook give further 
illustrations of these lessons. 

Airspeed 

A
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Vx Vy 

Aircraft Ceiling 

9.0 	Measures of Performance 

1	 What happens to the climb rate and climb angle 
of an aircraft if the weight increases? 

ANSWER: 
Figure 7.14  Variation of Vx and Vy with Altitude	 V(T - D)

RC = w Since then a larger weight 
reduces climb rate. Similar result of climb 
angle. 

7.0 	Descents 

This very same rate and angle of climb 
equations also work for an aiplane that is 
descending at a constant airspeed. All the pilot has 
to do is decrease the thrust until it is less than the 
drag. This means that the excess thrust is a 
negative value. Substituting a negative value into 
the climb rate equation means the aircraft is 
descending. If the excess thrust is a large negative 
value, then the airplane will descend faster. This 
concept was shown with the glider in Session 4 
(although the intent of that video segment was to 
illustrate the change in drag). The brakes added 
more drag thereby making a more negative excess 
thrust. 

8.0 	Summary 

Assuming a small angle of attack, 

RC = V sin g 
Then, starting from  Newton's second law and 
assuming a constant mass and velocity, simple 
calculations give the equation for predicting climb 

2	 Why does the climb rate decrease at high 
altitudes? 

ANSWER: 
Because less thrust is available at low air 
density. 

3	 What climb measurement is directly related to 
specific excess thrust? 

ANSWER: 
Specific Excess Thrust T - D = w = sin c it's
related to climb angle. 

4	 For the simplified math presented in the video, 
what were the assumptions? 

ANSWER: 
Negligible angle of attack, weight change and 
velocity change 
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1.0 Definitions 

Endurance - A measure of how long an aircraft is 
able to remain airborne on a given amount of fuel. 

Fuel flow -  The number of gallons (or pounds) of 
fuel used per hour of flight time. 

Maximum endurance airspeed - The airspeed (for 
a given weight and altitude), where the fuel flow is 
the minimum. The low fuel flow permits the 
aircraft to remain aloft longest. 

Range - A measure of how far an aircraft can go 
with a given amount of fuel. 

Maximum range airspeed - The airspeed that 
results in the best ratio of fuel flow to airspeed. 
This airspeed results in the maximum distance for a 
given amount of fuel. 

2.0 Introduction 

Many performance parameters tested on a car 
or an airplane are ancillary to the overall purpose of 
the vehicle. Evaluating the horsepower available, 
the takeoff distance, or the acceleration rate are all 
secondary factors for the real purpose of a 
motorized vehicle; the primary being how efficiently 
does it get from point A to point B. That efficiency 
is usually measured in miles per gallon because it 
directly relates to miles per dollar. If the fuel 
mileage of the vehicle is low, it costs more dollars 
per mile to operate. So even though an aircraft may 
be able to achieve Mach 2, it cannot remain at 
Mach 2 for very long because it uses a lot of fuel 
when flying at high speeds. 

The cruise performance of an aircraft is 
measured in two specific areas; 1) how long can the 
aircraft remain airborne on a specific amount of 
fuel (commonly referred to as its endurance) and 2) 
how far can the plane travel on a given amount of 
fuel (referred to as the aircraft's range). This 
session investigates the factors influencing an 
aircrafts cruise performance and describes how to 
determine the best cruise speed for both endurance 
and range. 

NOTE: 

See section 7.4 of the accompanying text for 
additional information on determining cruise 
performance of an aircraft. 

3.0 What is Range Performance? 

Range performance can be presented in the 
form of a ratio between distance travelled and fuel 
used. A ratio is found by dividing one term by 
another. Ratios can also be graphically represented 
by plotting the numerator on the ordinate and the 
denominator on the abscissa. From this graph, the 
slope of the line drawn is the ratio. In other words, 
the ratio gives the rate of change of one parameter 
with reference to another. For example, to find a 
car's fuel mileage experimentally, you might 
proceed in the following manner: 

a) fill the car with fuel 
b) drive for 100 miles 
c) refill the car with fuel 
d) divide the number of miles travelled (100) by 

the amount of fuel you just put in (possibly 
4 gallons) 

e) the result would be 25 miles per gallon 

To look at this problem graphically, plot miles 
on the vertical axis and gallons on the horizontal 
axis. Then place a mark at the point which 
corresponds to 100 miles and 4 gallons. Drawing a 
line from the origin to this point graphically shows 
the ratio between miles driven and fuel used, as 
shown in Figure 8.1. 

Figure 8.1 Ratio of Miles 
Driven vs. Fuel Used 
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The slope of the line is the "miles-per-gallon." 
The usefulness of a graph like this can be seen 
when considering a trip of less than 100 miles. To 
determine the amount of gas need for a 58 mile trip, 
enter the graph on the vertical axis at "58," go 
across until it meets the slope line, then drop down 
to the horizontal axis. The value will be 2.32 
gallons (Figure 8.2). 

100

 75

58 
50

 25 

1 2 3 4 
2.32 Fuel Used 

M
ile

s 
D

riv
en

 

Figure 8.2 Determining Fuel for Trip 

However, the above test was performed at only 
one speed. To find the best speed, a similar test 
would have to be accomplished for several speeds 
resulting in a series of graphs. Determine the slope 
of the graph for each speed tested as in Figure 8.1. 

To determine the best speed to travel for the 
maximum gas mileage, make another graph. For 
each of the speeds tested plot the slope versus the 
speed from which it came. This procedure yields a 
curve similar to that shown in Figure 8.3. 

4 

mpg
 
(×10) 3
 

2 

1 

Endurance 
Best 

Range 
Best 

1 2 3 4 5 6 
mph (×10) 

Figure 8.3 Miles per Gallon 
vs. Miles per Hour 

Two valuable pieces of information are 
available from this curve: a tanget from the origin 
to the curve (that is to a point where the line just 

touches the curve) shows the speed and fuel mileage 
which will result in the car's best endurance. In 
other words, for a given amount of fuel, traveling at 
this speed will result in the longest time between 
fuel stops. 

The point at top of the curve is the speed and 
fuel mileage for the car's best range. This allows 
the farthest distance between fuel stops. 

You've just completed a test to find the cruise 
performance of your car and presented the data in a 
manner which is useful to the owner.

 Caution: 

Each of the tests must be conducted on the same 
section of road. Conducting one test on a flat road 
and another on a hill will obviously interfere with 
the results. Additionally, if the tests are conducted 
on the same day, atmospheric effects (wind and 
density changes) and road surface conditions (wet, 
icy, etc.) can be minimized. 

Although the terminology is a little different, 
the cruise performance of an aircraft is determined 
in much the same manner. 

4.0 Determining the Maximum Endurance 
Airspeed 

When an aircraft is in level, unaccelerated 
flight, it is usually thought of as being in a cruise 
condition. Since the plane is not accelerating in any 
given direction, Newton says the forces acting on 
the airplane are balanced. Recall from earlier 
sessions this means the lift equals the weight and 
the thrust equals the drag. Then the force equations 
which describe cruise flight are written as: 

and 

D = T = 1/   
2 r V 2  SCD 

The way to determine how efficient the aircraft 
is in the cruise configuration is look at the amount 
of drag at some weight. This is logical because 
more thrust required means more fuel burned, 
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which in turn costs more money. To accomplish 
this, a ratio of lift to drag (or weight to thrust) is 
created. Equation 8.1 can be used to show the 
similarity between the lift-to-drag ratio and the CL 

to CD ratio: 

1
L 2 qV2SCL C= = L
D 1

2 qV2SCD CD 

The values are put into the coefficient form 
because it is a more general reflection of the 
relationship between lift and drag. Rearranging 
Equations 8.1 to solve for the coefficients of lift and 
drag yields the following relationships: 

= 2wCL (8.2)qV 2S 

and 
= 2TCD qV 2S 

By putting these measurements into Equation 8.2 
the lift and drag coefficients can be determined. 
Plotting the values of CL and CD for a plane results 
in a curve which takes on the shape of a parabola, 
as shown below. From this drag curve we can 
obtain the same information for endurance that we 
did for the car. 

CL 

CD 

Figure 8.4  Drag Curve 

Drawing a line from the origin to the tangent, 
the point of intersection occurs where the ratio of 
CL to CD is the maximum. This is illustrated 
below: 

Figure 8.5 Determining Tangent 

The slope of the tangent line is the maximum 
CL to CD ratio. By drawing a line from the tangent 
point to the CL axis, the optimum lift coefficient is 
determined. Inserting this value of CL into 
Equation 8.2, the optimum velocity is found. This 
speed yields the maximum CL to CD ratio. 

= 2w V (8.3)qSCL 

This velocity is the "maximum endurance 
airspeed" and gives the pilot the greatest amount of 
time airborne for a given amount of fuel. This is 
the speed the pilot would fly if stuck in a holding 
pattern. 

NOTE: 

After considering the problem, it should seem 
logical that the best endurance occurs at the plane's 
best lift-to-drag ratio (same as CL/CD ratio): 

1. The best endurance occurs when the fuel 
flow is as low as possible. 

2. Since fuel flow is directly related to thrust, 
the best endurance should come at the 
condition for minimum thrust. 

3. Since thrust equals drag in cruising flight, 
the thrust (and fuel flow) will be lowest 
when the drag is lowest. 

4. For any given weight, the lowest drag occurs 
when the lift-to-drag ratio is highest. 

5. Since L/D = CL/CD, then the highest CL/CD 

ratio (tangent point) yields the best 
endurance. 

Consider the following example: 
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Example 1: Velocity 
(ft/sec) 

Weight 
(lbs) 

Thrust 
(lbs)
 

CL CD 

591 10,000 1,350 0.14 0.019

513 9,850 925 0.18 0.017 

440 9,700 600 0.24 0.015

366 9,550 400 0.35 0.015 

293 9,400 250 0.53 0.014 

257 9,250 215 0.68 0.016 

220 9,100 200 0.92 0.02 

205 8,950 205 1.04 0.024

190 8,800 220 1.19 0.03

184 8,650 240 1.24 0.035

During a test flight, the following data is
 
collected: 

Velocity 
(ft/sec) 

Weight 
(lbs) 

Thrust 
(lbs) 

591 10,000 1,350 

513 9,850 925 

440 9,700 600 

366 9,550 400 

293 9,400 250 

257 9,250 215 

220 9,100 200 

205 8,950 205 

190 8,800 220 

184 8,650 240 

Step 2:  Plot a graph of CL vs. CD
1.2

CL
1.0 

0.8 

0.6 

0.4 

0.2 

0.01 0.02 0.03 0.04 
DC

o 

o 

o 
o 

o 
o 

oo o 

If the aircraft has a wing area of 205.33 square 
feet and is flying at an altitude where the density is 
0.002 slugs per cubic foot, what is the maximum 
endurance lift coefficient and airspeed for a 9000 
pound aircraft? 

Answer: 
Step 1: Compute the lift coefficient (CL) and drag 
coefficient (CD) for each point in the table above 
using Equation 8.2. Step 3: Draw a tangent line from the origin to the 

curve.
= 2wCL (8.2) qV 2S 1.2

CL
1.0

0.8 

0.6 

0.4 

0.2 

0.01 0.02 0.03 0.04 
DC

and 
= 2TCD qV 2S 
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Step 4:  From the tangent point, determine the 
optimum CL by drawing a line to the vertical axis. 

CL 
1.2 

0.88 1.0 

0.8 

0.6 

0.4 

0.2 

CD 
0.01 0.02 0.03 0.04 

Step 5:  For this value of CL, use Equation 8.3 to 
determine the velocity for an aircraft which weighs 
9000 pounds. 

= 2wV (8.3)qSCL 

2(9000 lbs)
V = (0.002 slugs/ft3 )(205.33 ft3 )(0.88) 

V = 223 ft/sec (152 miles/hr) 

However, this speed only applies to the weight 
entered into Equation 8.3. As fuel is burned, the 
weight will decrease, therefore the lift required also 
goes down. The result is the speed associated with 
the optimum CL is lower. Therefore, to achieve the 
maximum endurance, the aircraft should fly at a 
slower speed. 

While traveling large distances, instead of 
maximizing the time spent airborne, the mileage is 
the main area of interest. To optimize the mileage, 
an aircraft will fly at the optimum airspeed for 
range. 

5.0 Determining the Maximum Range Airspeed 

When an aircraft flies at its maximum range 
airspeed, it travels the maximum distance for a 
given amount of fuel. In other words, it yields the 
best fuel mileage and is therefore most cost 
efficient. Through experience, engineers have 

determined that the CL for maximum range airspeed 
is approximately equal to 70% of the CL for 
maximum endurance. By inserting this value into 
the lift equation the maximum range airspeed is 
calculated. 

NOTE: 

The details of this approximation are outside 
the scope of this course. There may be some 
question as to why the point of best CL/CD is not 
also the best range condition. The qualitative 
explanation is:  The condition of best CL/CD is the 
absolute lowest fuel flow possible. Flying at this 
condition turns out to be a fairly slow speed. 

If the pilot adds more thrust, then both the fuel 
flow and speed increase. The key is that the fuel 
flow increases only a little, but the speed increases 
a lot. This means an increase in mileage. If, 
however, the pilot adds too  much more thrust, then 
just the opposite happens and the  milage goes 
down. Experience and analysis shows that the 
proper amount of extra thrust occurs when the CL is
 only 70% of the CL for best endurance 

The following example will highlight the 
relationship between maximum endurance and 
maximum range airspeeds. 

Example 2: Using the same aircraft and test data 
from Example 1, what is the maximum range 
airspeed for the 9000 pound aircraft? 

Answer:
 
Step 1:  Since the CL for maximum endurance has
 
already been determined then simply multiply this
 
number by 0.70.
 

(0.88) (0.70) = 0.62 

Step 2:  Place this value of CL into Equation 8.3. 

= 2wV (8.3)qSCL 

2(9000 lbs)
V = (0.002 slugs/ft3 )(205.33 ft3 )(0.62) 

V = 265 ft/sec (181 miles/hr) 
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Notice how this speed is higher than that for 
maximum endurance. Because the lift coefficient is 
smaller, the speed must be higher. 

Here again, as fuel is used and the weight 
decreases, so airspeed for maximum range also 
decreases. Then whether the flight is made at 
maximum endurance airspeed or maximum range 
airspeed, as fuel is burned off, the plane's speed 
should decrease. 

The whole reason we fly in aircraft from point 
A to point B is to be there quicker. For this reason, 
its not really desirable to fly slower as the plane 
lightens. In order to keep the speed high, a 
reexamination of the lift equation is in order. 

6.0 How to Keep the Cruise Speed High 

As the weight (and subsequently the lift 
required) decreases and the velocity is kept the 
same, what other items can be changed to maintain 
the optimum CL? To answer this, look again at 
equation 8.1. 

L = W = 1/   
2 r V 2  SCL (8.1) 

Obviously, it's difficult to change the wing 
area, S, and the goal is to still fly at the optimum 
CL. Therefore, to keep the velocity the same, the 
only factor left to decrease is the air density. The 
pilot can decrease the density quite easily by flying 
at a higher altitude. To illustrate this, look at the 
following example. 

Example 3: 
Again using the aircraft in Example 1, 

assuming the aircraft maintains the optimum CL 

and airspeed for maximum range, what should the 
flying altitude be if 2000 pounds of fuel is burned? 

Answer:
 
Step 1:  Rearrange Equation 8.1 to solve for the
 
density.
 

L = w = 1/   
2 r V 2  SCL (8.1) 

= 2wq V 2SCL 

Step 2: Insert the appropriate values from Example 
2. 

8.6
 

= 2(7000 lbs)
q

(265 ft 
sec )2(205.33ft2 )(0.62) 

r = 0.0016 slugs/ft3 

Step 3: The engineers would then use the "Standard 
Atmosphere Chart" to determine what altitude 
corresponds to this density. Recall the original 
density was 0.002 slugs/ft3.  From the table this 
corresponds to an altitude of 5,000 feet. Similarly, 
a density of 0.0016 slugs/ft3, corresponds to an 
altitude of 12,000 feet. As a result, the pilot would 
climb to 12,000 feet in order to keep the optimum 
CL and airspeed for the maximum range. 

This is the procedure aircraft use when flying 
long distances. The pilot will cruise at a specific 
altitude until he burns a certain amount of fuel. 
Then he will climb to another altitude until more 
fuel is burned, then repeat the process until the 
point is reached where the descent for landing 
should begin. This procedure is called a "step 
climb" profile and works especially well for jet 
aircraft which burn large amounts of fuel. 

The descriptions in Sections 3, 4, and 5 
describe how engineers predict the cruise 
performance of an aircraft. Flight testers then 
verify these predictions using a slightly different 
technique. 

7.0 Flight Testing Cruise Performance 

The test instrumentation used on a test flight 
greatly assists in verifying the engineering 
predictions. A test aircraft will be outfitted with a 
fuel flow meter which measures the amount of fuel 
the engine (or engines) use per hour. 
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Figure 8.6 Fuel Flow Meters on Test Aircraft

 At each altitude, the aircraft is flown at various 
airspeeds and the fuel flow at each of those speeds 
is recorded. This data is then plotted to create a 
graph similar to the one shown below. 

Figure 8.7 Plot of Flight Test Data 

This single curve will verify the predicted 
speeds for both maximum endurance and maximum 
range. Draw a tangent from the origin tangent to 
the curve. At the tangent point, a line is draw 
straight down to the "airspeed" axis and another line 
is drawn over to the "fuel flow" axis. The axis 
values are the maximum range airspeed and the fuel 
flow associated with that airspeed. Figure 8.8 
illustrates this procedure: 

Figure 8.9 Determining Maximum 

Endurance Airspeed and Fuel Flow
 

Each altitude will have a curve constructed so 
the pilot can determine how much fuel he will need 
and what airspeed he should fly at that altitude. 

8.0 	Summary 

Predicting cruise performance is really straight 
forward once you realize that the critical fuel flow 
value is related directly to thrust and drag. Since 
the forces are balanced in cruise flight, thrust 
equals drag. The lowest fuel flow occurs at the 
speed for lowest drag. The best range occurs at the 
lowest ratio of drag to velocity (Figure 8.8). 
During the course of a flight test, by measuring the 
velocity and fuel flow, a graph can be quickly 
generated to verify the predicted results. Once it 
has been determined how to efficiently cruise to 
your destination, the next step is to land. 
Determining landing performance is the topic of the 
next session. 

9.0 	Measures of Performance 

Fuel 
Flow 

oo o o o o o o o 
o o 

o 
o 

FFmax range 

Vmax range 

Velocity 

Figure 8.8 Determining Maximum 
Range Airspeed and Fuel Flow 

The bottom of the curve shows the maximum 
endurance airspeed and fuel flow, as shown in 
Figure 8.9. 

Fuel 
oFlow 

FFmax endurance 

Vmax endurance 

Velocity 

oo o o o o o o o 
o o 

o 

1 What is the definition of endurance? 

ANSWER 
Endurance is how  long an aircraft can remain 
airborne on a given amount of fuel. 

2 What is the definition of range? 

ANSWER 
Range is how  far a vehicle can go on a given 
amount of fuel. 

3	 As fuel is burned and the aircraft's weight 
decreases, what is the best course of action a 
pilot can take? 

ANSWER 
As the weight decreases, so does the lift 
required. As the lift required decreases, 
equation 8.1 shows that either the speed, lift 
coefficient, or the density can be decreased. To 
keep the lift coefficient at the optimum and the 
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Velocity 
(ft/sec) 

Thrust 
(lbs)
 

CL CD  

132 115 1.74 0.05 

147 110 1.4 0.04 

161 90 1.17 0.029 

176 120 0.98 0.032 

190 140 0.84 0.033 

205 180 0.72 0.036 

220 220 0.63 0.038 
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speed high, the density should be decreased by
 
climbing to a higher altitude. CL 

1.8
 

1.6 

1.4 

1.2

1.0 
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0.01 0.02 0.03 0.04 
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o 10.0 Problems 

1. A jet airplane yields the following flight test 
data. The aircraft weighs 3600 pounds, has a wing 
area of 125 square feet, and is flown at an altitude 
where the density is 0.0019 slugs/ft3.  What are the 
predicted maximum range and endurance airspeeds? 
Neglect any changes in weight. 

Answer: 
Step 1:  Determine the lift and drag coefficients for 
each velocity using Equation 8.2. 

Step 3:  Draw a line from the origin tangent to the 
curve. 

1.8CL 
1.6 

1.4 

1.2 

1.0 

0.8

0.6 

0.4 

0.2
 

0.01 0.02 0.03 0.04 0.05 
DC

o 
o 

o 

o 

oo 
o 

o 

2CL = w (8.2) qV 2S 

and 
C = 2T

D qV 2S 

Step 4: Draw a line from the tangent point to the 
vertical axis and read the CL for maximum 
endurance.

CL

1.15 

0.01 0.02 0.03 0.04 
DC

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

1.4 

1.6 

1.8 

0.05 

o 
o 

o 

o 

oo 
o 

o Step 2:  Make a graph of CL vs. CD 

Step 5:  Put the  CL found in step 4 into Equation 
8.3 and solve for the best endurance airspeed. 
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2V = w  (8.3) qSCL 

2(3600 lbs)
V = 

0.0019 slugs (125 ft2 )(1.15)ft3 

V = 162 ft/sec (111 miles/hr) 

Answer:
 
Step 1: Since the CL for maximum endurance has
 
already been determined then simply multiply this
 
number by 0.70.
 

(1.15) (0.70) = 0.85 

Step 2:	 Place this value of CL into Equation 8.3. 

= 2w  V ( 8.3)qSCL 

2(3600 lbs)
V = 

0.0019 slugs (125 ft2 )(0.85)ft3 

V = 194 ft/sec (132 miles/hr) 
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1.0 Definitions 

Descent: moving  from the cruising altitude to just 
above the runway. 

Approach phase: The point where the pilot guides 
the airplane around to join the airport traffic pattern 
and lowers the landing gear and the flaps. 

Traffic pattern: an invisible path in the sky 
around runways that pilots use to smooth traffic 
flow 

Flare: the process of increasing the angle of attack 
of the wing and its lift. The purpose of the flare is 
to arrest the sink rate of the airplane just above the 
runway. 

Rollout phase: starts when the plane touches down 
and ends when it stops rolling. 

2.0 Introduction 

The landing process has three distinct steps or 
phases: the approach, the flare to touchdown, and 
the ground roll after touchdown. Most of the math 
in this session is simply a variation of what was 
already described in the sessions on lift, drag, 
takeoff, and descents. 

3.0  Theory 

3.1 Descents 
The technical look at descents is exactly the 

same as that for climbs except that the excess thrust 
is a negative value and therefore gives a negative 
climb rate. Although descents are not part of the 
landing session video, it is useful to understand the 
basic methods used to get down to the airport 
vicinity. 

Consider yourself flying at cruising altitude 
until you see the runway below. If you simply 
push the plane into a dive straight for the runway 
and watch what happens, you'll see the airspeed 
increase very rapidly. That is because from the 
moment you push the nose of the airplane downhill, 
you get the extra thrust due to the weight of the 
aircraft. This was discussed in more detail in the 
previous sessions on drag and climb performance. 
The thrust force was set to exactly cancel the drag 

force during the level cruise, but that balance is 
upset in the dive. 

You may have guessed that a steeper dive 
generates a greater thrust-due-to-gravity, and 
therefore gives a faster acceleration and a higher 
diving speed. This kind of high speed descent may 
create a problem. By doing this, you might either 
overspeed the plane by diving too steeply, or, more 
likely, end up right near the runway with too much 
airspeed. 

You can have a real problem if you try to land 
with too much speed on the plane. One problem is 
that a fast vehicle of any kind is more difficult to 
control than a slow one. Another problem is that if 
you land fast, then you'll need more runway to stop. 

If you fly near the airport and just push over, 
you'll end up too fast. Instead, pull the throttle 
back to idle when pushing over. By reducing the 
engine's thrust force, you can cancel out the extra 
thrust force from gravity.  Reducing the thrust 
reduces the tendency to speed up in a descent. You 
still could fly too fast by nosing over too much, but 
it is easier to keep things under control this way. 

There is another way of descending that you 
have already experienced in an airliner. Airline 
pilots fly along at cruise altitude until they're about 
100 miles away from the destination airport. At 
that point you may hear the plane's engines reduce 
power slightly.  

At the same time the captain will nose over so the 
speed doesn't change at all. Of course the plane 
will start descending because it’s now pointed 
downward. This kind of descent begins long before 
you see the airport and can take 20 or 30 minutes. 

To summarize descents, there are several ways 
of getting down: You can drop down steeply with 
idle power and high speed, or descend gradually 
with partial power and moderate speed, or descend 
by nosing over to a high speed with full power. 
Whichever way you get down, the descent phase is 
complete when you're close enough to the airport to 
prepare to land. 

3.2 Approach 
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The next step, called the approach phase, is the 
point where the pilot guides the airplane around to 
join the airport traffic pattern.  Sometimes pilots 
fly "straight-in" approaches rather than fly in a 
pattern. This is the usual airline approach.  To be 
sure of being over the runway with just the right 
combination of speed, altitude and sink rate, the 
pilot must be considerably more precise when flying 
the approach as compared to descending. While 
in the approach phase, the pilot also has to lower 
the landing gear and the flaps. 

The stall speeds are faster for heavier aircraft 
than for light ones. The reason for this is the ratio 
of the weight (w) compared to the wing area (S). 
This ratio (w/S) is called the "wing loading." A 
sheet of paper (with a lot of area compared to its 
weight) will easily be lifted by a gentle wind, but a 
(bound) pad of paper will not because it weighs 50 
or 100 times as much. This is the principle of wing 
loading and is applied to minimum flying speed for 
heavy and light aircraft. A typical general aviation 
aircraft (such as the Cessna 172) may have a wing 
loading of only 11 lbs/ft2 and a typical airliner may 
be more like 120 lbs/ft2.  This yields a considerable 
difference in minimum flying speed. 

To further illustrate this idea, consider a simple 
wing that, due to its cross-sectional shape and 
maximum angle of attack, has a maximum lift 
coefficient, CLmax, of 1.6.  We can use the definition 
of CL to calculate the minimum flying speed for 
various wing loading ratios: 

Figure 9.1 The Approach 

All of the detailed procedures the pilot must 
follow in the approach phase are designed to do one 
thing: get the plane into position for the landing 
flare. To accomplish a safe flare, the plane must 
be within a range of values for speed, sink rate, and 
height above the runway. This "window" of 
numbers must be consistently attainable. To help 
the pilots be consistent, the approach phase is 
broken into several steps such as first getting to a 
specified speed, then lowering the gear, then 
lowering partial flaps, then slowing to another 
speed and so forth. 

Part of the video discusses the invention and 
application of flaps. Review the lift discussion in 
Session 3 where the lift is affected by the wing's 
velocity, angle of attack and curvature. To get lift 
at the normal flying speed, the wing has a little bit 
of curvature and the pilot flies with a little angle of 
attack. To land, the pilot would want to slow down. 
To fly slower and still create the same lift, the pilot 
has to increase the angle of attack. This simple 
procedure works for typical, light aircraft because 
they have a lot of wing surface that allows them to 
fly very slow. 

Since by definition C  
L = 2w/rV  2S , then 

Vmin  = [2/rCLmax]1/2  ×  [w/S]1/2.    

Picking the standard sea-level value of .002377 for 
density (r), we can calculate the minimum speed 
for the Cessna as 

Vmin = [2/(.002377 x 1.6)]1/2  × [11]1/2  = 76 ft/sec 

Using the same maximum CLmax and density, the 
effect of the higher wing loading is a stall speed of: 

Vmin= [2/(.002377 x 1.6)]1/2 × [120]1/2 = 251ft/sec 

This considerably higher stall speed leads to higher 
landing speeds and to two problems; more difficult 
handling as the pilot tries to precisely guide the 
aircraft at high speeds, and greater runway 
requirements for the ground roll. 

To get slower stall speeds, the first idea may be 
to decrease the wing loading by putting on a much 
larger wing. A modern transport would look 
unusual if the wing was four or five times its 
current size.  More importantly, it would have huge 
amounts of drag and would therefore fly very 
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slowly. Designers had to go back to Newton's laws. 
They knew that they could use more curvature on 
the wing to create more lift at lower speeds, but 
then, they would have too much drag at high 
speeds. This drag discussion was covered in 
Session 4. 

Of course, the answer was the development of 
flaps that could be used to change the camber 
(curvature) of the wing only when it was desired. 
Flaps don't weigh much and are very useful for 
increasing the value for CLmax anywhere from 20% 
to 60% (Figure 9.2). The advantage in decreased 
stall speed can be calculated using the previous 
equation. 

descent. This increase in angle of attack (and lift) 
from the approach to the flare is illustrated below. 

Stall 

CL 

CL max 

Approach condition 

Flare to CL max 

Angle of Attack 
Figure 9.3 

While doing this, gradually decrease the thrust 
to idle. With no thrust, the plane can't sustain flight 
a foot above the runway because the drag force 
acting on the plane's mass wants to decelerate it. 
Typically what a pilot will do is let the plane 
decelerate all the way to stall speed and gradually 
sink the last foot. The pilot’s timing is crucial.  The 
pilot has to judge just when and how much to pull 
the wheel and throttle. Depending on its size, 
speed, and handling characteristics, each plane has 
its own method. 

Basic Wing 

Full Flap 

Full FlapCL 
Basic Wing 

Angle of Attack 

Figure 9.2 

To ensure a smooth flight, most flight manuals 
call for a series of steps where the pilot 
incrementally extends the flaps, changes speed, and 
steers the plane around until it's lined up with the 
runway about 50 ft. above the ground and ready for 
the next phase, the flare. 

3.3 Flare 
The landing flare is the simplest to talk about, 

but the most difficult to do, and takes a lot of 
practice to be good at. The flare procedure goes 
something like this: the plane is approaching the 
runway at 80 mph on a 3 degree downhill slope 
(also known as the glideslope).  Once in this 
position the pilot begins the flare about 50 feet 
above the runway by pulling on the wheel to 
smoothly increase the angle of attack and the lift of 
the airplane. This extra lift stops the plane's 

Figure 9.4 The Flare 

If the pilot pulls too aggressively, then the plane 
might "balloon up" back into the air and might 
even come crashing back to the ground if he doesn't 
react quickly. To recover from this situation, the 
pilot would have to add power to keep the plane 
from slowing and/or sinking too quickly. If the 
pilot doesn't pull enough during the flare, then he 
won't stop the sink rate, and the plane might hit the 
ground with the nose gear first or too hard. 
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Figure 9.5 The Balloon 

Another complicating factor is turbulence. A 
gust of wind can upset any part of the approach or 
flare phase. It’s just like riding a bike or driving a 
car with precision - the faster you're going, the 
harder you have to work at it (see Suggested 
Activities for a demonstration of this). 

One of the characteristics of a flare is that you 
pass by a lot of runway before touching down. If 
you point at the end of the runway during the 
approach but level off just above the runway, then 
you'll be flying along it, passing it by (Figure 
9.6(a)). 

This is acceptable for most kinds of flying 
because the runways are long. But suppose you 
don't have a long runway?  Suppose you want to 
land on an aircraft carrier? There's no room to 
flare. The pilot flies the airplane straight onto the 
ship with a pretty high sink rate, (Figure 9.6(a)). 
Eliminating the flare gives the pilot pinpoint landing 
capability, but every landing is a hard "controlled 
crash." All carrier capable aircraft are built with a 
super strong structure and landing gear so they can 
slam onto the deck without being destroyed. Of 
course, the aircraft do have limits on how much 
sink rate they can handle. 

3.4 Rollout 

The last part of the landing, the ground roll, is 
least susceptible to pilot technique and so it is 
easiest to determine using Newton's Laws. The 
forces are similar to those for the session on takeoff 
performance. 

Once the wheels touch, the wing doesn't have to 
support the aircraft's weight any more, so the pilot 
can feel free to decrease the angle of attack and 
speed as quickly as he wants to. The next task is 
decelerate the airplane to a full stop. To get an idea 
of the ability to slow down, go to Newton's second 
law, F  =  ma. Since we're looking for a deceleration, 
a should be negative. This means that to get the 
most possible deceleration, we would like the 
largest forces possible in the negative (or drag) 
direction and the smallest mass possible. Since we 
can't change the mass of the plane on most flights, 
we need to concentrate on the decelerating drag 
forces. To create drag forces, we have the brakes, 
the air, and the engine. 

Brakes generate a drag force by converting the 
momentum of the plane into heat. Calculating the 
drag force they generate is simple: The braking 
drag is the braking coefficient m times the weight on 
the wheels. m decreases if you're braking on snow 
or ice (m= .25), but is more or less a constant 
number for normal tires on normal, dry runways 
(m=.75). In the takeoff session, m was used to 
illustrate brakeless rolling friction and is typically 
about .05. 

A class experiment to illustrate the concept of 
friction coefficient was discussed in the teacher's 
guide in Session 4 (Drag). Technically, the 
experiment discussed was for sliding friction ­
which is the case for a plane that is skidding, not 
rolling with braking force, as is normal. 

If the wing isn't lifting at all, then the entire 
weight of the plane is supported by the wheels. A 

Figure 9.6 
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heavy weight on the wheels gives a lot of braking 
force to the plane. This wheel weight is often called 
the "reaction" force (R) in reference to Newton's 
third law. Some aircraft wings are still lifting 
after the plane touches down. This means that the 
brakes are not getting the full weight and are 
therefore not as effective since Fbrakes = mR.  As the 
plane slows further after touching down, the wing 
lift decays and the reaction force increases, thereby 
increasing the braking force. 

Most of the time we're trying to minimize air 
drag force as much as possible, but to improve 
deceleration, we like drag. So, instead of keeping 
the airplane aerodynamically clean, the big heavy 
planes have spoilers (or air brakes) that pop out at 
touchdown. This desire for drag also encourages the 
use of full flaps for landing: planes can descend 
slower and steeper without speeding up if they have 
extended flaps.  This extra drag is why planes don't 
takeoff with full flaps, although some takeoff with 
partial flaps. Some military planes even use 
parachutes called "drag chutes" to help slow them 
down. This is done only on military planes because 
it is expensive to have extra ground crew to pick 
up, pack and reload the chutes. 

Another drag force can be created by the 
engine. Some propeller aircraft can be put in a 
"reverse" mode which changes the blade angle so it 
accelerates the air forward and slows the plane. 
These are a little complicated and more expensive 
to build, so not all planes have them. In a jet 
engine, they're called thrust reversers.  Basically, a 
reverser "bucket" forces the exhaust towards the 
front in the direction opposite of the plane's motion 
(Figure 9.7). Newton's law about "equal and 
opposite reaction" shows that if the bucket forces 
the air to the front, then the air forces the bucket 
-and the rest of the plane- to the rear, the drag 
direction. Again, thhis can be seen on airliners and 
other transport aircraft because those types of 
planes need the most help to decelerate. 

Figure 9.7 Bucket Swings 
NOTE: 

Session 4 of the text provides expanded information 
on kinematics. 

Use Newton's second law to help see why it is 
important for large aircraft to use everything 
available to slow down the plane. Keep in mind 
that the biggest problem is the length of the runway. 
If its too short, then the plane can't fly in. To relate 
Newton's second law to required runway distance, 
review basic kinematics in class. 

If desired, the kinematic relationship for any 
object can be developed as follows: From an initial 
speed (Vo) assume a constant deceleration (a) all 
the way to a stop. This can be illustrated 
graphically as follows: 

V

V 80
 
75
 
70
 

time (sec) 

o 

1 2 3 

Figure 9.8 Kinematic Relationship 

For the first second of travel, the average speed 
is 80 ft/sec which gives a distance of {80ft/sec x 1 
sec} = 80 ft. For the next second, the average 
speed is 75 ft/sec which gives a distance of 
{75ft/sec x 1 sec} = 75 feet traveled and a 
cumulated distance of 80 + 75= 155 ft. This 
process can be continued step-by-step to get the 
total distance traveled. Note that for each time 
slice, the distance is the area under the curve. 

A simple method is to recognize that the total 
area under the curve is the total distance traveled 
during the deceleration. Since the area of a triangle 
is 1/2 base x length, then the distance S =  1/2Vo x 
time to stop. Since we know DV/Dt = a, then the 
time to stop is t =  Vo  /a.  Combining gives the 
kinematic equation for distance traveled: 
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To apply this calculation to Newton's second 
law, determine the acceleration which gives a = 
F/m.  Putting it all together gives a neat little 
equation for estimating ground roll distance: 

This says that the landing distance increases with 
the mass and the square of touchdown velocity 
(VTD). The distance decreases as the drag forces go 
up. It's important to realize that this equation is 
valid only if the decelerating forces are constant. In 
reality, all of the forces in the drag direction change 
a little, so the equation is not exact.

 The old biplanes were so light and landed at 
such low speeds that most of them didn't even need 
brakes - especially since they landed in grass fields 
that created lots of drag on the wheels. 
Approximate values to show a calculation of this 
for a Fokker Triplane are VTD = 60 ft/sec, w = 
1200 lbs, average drag from rolling wheels over 
grass = 90 lbs, average aerodynamic drag = 80 lbs. 

S = [1200/32.2]{602}/2[90+80] = 395 ft 

A big transport on the other hand, has a lot of 
mass and a high landing speed like 150 mph. The 
"velocity squared" effect shows that big planes 
would have huge landing distances unless they 
created a lot of drag. That's why we put big 
brakes, big spoilers, and thrust reversers on them. 
The landing distance equation is one of the primary 
reasons that we're trying to land as slowly as 
possible--- to shorten the required runway distance. 

In reality, each of these drag forces changes a 
little during the ground roll. You can feel this when 
you get jerked around in your seat after touchdown. 
That jerking around is you experiencing Newton's 
first law:  bodies in motion tend to remain in motion 
unless disturbed by an outside force. You are the 
body in motion. The seatbelt -which is attached to 
the rest of the plane- exerts an outside force on you 
that slows you down along with the plane. 

4.0 	Summary 

To land an airplane you need to descend to the 
airport, reconfigure the airplane for landing then 
approach the end of the runway with the proper 
sink rate, flare the plane just over the runway to 
stop the descent then allow it to land in the last foot, 
and finally, decelerate the plane on rollout.  Each 
step can be explained with basic physics. 

It’s the test pilot's job to figure out the best 
procedures for descending, that means 
measuring the dive angle when thrust is reduced 
by 10 or 20%. During the approach it means 
figuring out the safest speed to fly each step of 
the way when the gear goes down and when the 
flaps go down. During the flare it means 
figuring out just when to throttle the engines 
and start the flare. Finally, a test pilot has to 
perform a series of ground rolls to see how 
much runway the plane really needs, not what 
is predicted from approximations. 

5.0  	Measures of Performance 

1	 What are the three phases of the landing 
process? 

ANSWER 
The approach, the flare to touchdown, and the 
ground roll after touchdown. 

2	 During the flare, why does the aircraft descend? 

ANSWER 
With the bulk of the thrust removed, the drag is 
greater than the thrust causing the aircraft to 
decelerate. As the aircraft decelerates, lift 
decreases causing the aircraft to descend to the 
runway. 

3	 What are three ways to create drag forces to 
decelerate? 

ANSWER 
1.	 Brakes, to generate rolling drag. 
2. 	 Airbrakes to increase aerodynamic drag. 
3.	 Engine by "reversing" the thrust; that is 

directing the thrust forward. 

6.0 Suggested Activities 
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The difficulty of landing at high speeds  can be 
demonstrated by having students ride bikes into a 
runway-like "chute" at different speeds. Like 
landing on a calm day, this is not much of a 
challenge if the rider is lined up with the chute long 
before he or she gets there, even at high speed. 
The task is made challenging (especially at high 
speed) if the rider follows a path that is laterally 
offset from the ideal path and is allowed to 
maneuver into position only immediately before 
entering the zone. This is like having a plane get 
bumped off-track by a wind gust. 

To simulate a pilot flying in the weather and 
"breaking out of the clouds" just before touching 
down, the students can ride approximately towards 
the chute with eyes closed until someone shouts 
"BREAKOUT!" just prior to entering the chute. 
This simple exercise will illustrate the benefits of 
slow approach speeds in poor weather. 
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1.0 Introduction 

The previous sessions showed that Newton's 
Laws of Motion are used during aircraft flight 
testing. During this final session, the same 
techniques used to evaluate a full size aircraft are 
used to predict the performance of a radio 
controlled (R/C) model aircraft.  The scope of 
testing is limited because there is no pilot on board 
and instrumentation, such as airspeed and fuel 
flow, is not available. As a result, the focus of this 
session is on weight and balance, thrust 
determination, and takeoff performance. The 
procedures described can be accomplished by any 
student having access to a R/C model. 

2.0 Weight and Balance of the Model 

To determine the aircraft's weight and location 
of the center of gravity, use the same procedures 
described in Session 2. Begin by establishing a 
Reference Datum Line (RDL) at the forward end of 
the propeller hub. This can be done by placing a 
carpenter's square at the end or by placing the 
model flush against a wall. From the RDL, 
measure the horizontal distance to the point where 
the nose wheel (or tail wheel, depending on the type 
of model) touches the ground. This is the arm 
length for the nose gear. Accomplish the same 
procedure for the main landing gear. 

NOTE: 
Since the assumption is that the aircraft is 
symmetric, only one main gear need be measured. 

The following lengths were found using the 
model shown in the video: 

Nose Landing Gear Arm = 5.75 inches 
Main Landing Gear Arm = 14.25 inches 

Measuring Landing Gear Arms 

The aircraft is then weighed. Recall from 
Session 2 that a scale is placed under each landing 
gear, the weights are recorded and then added 
together to obtain the total aircraft weight. 

Caution: 

It is important that the aircraft be level to achieve 
the proper weight distribution on each landing gear. 

Weighing the Aircraft 

Now, to determine the cg location, the weight 
recorded at each landing gear is multiplied by the 
arm length from the RDL for that gear.  For the 
model under evaluation, this yields the following: 

Item 
(Gear) 

Arm Weight Moment 

Nose 5.75 in 0.88 lbs 5.06 in-lbs 

Left Main 14.25 in 1.75 lbs 24.93 in-lbs 

Right Main 14.25 in 1.56 lbs 22.23 in-lbs 

Total 4.19 lbs 52.22 in-lbs 
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Then, divide the total moment by the total 
weight to determine the location of the cg. Here, 
the cg is located 12.46 inches from the RDL, which 
locates it on the wing within the range of cg's 
specified by the model maker. 

3.0 Determining Thrust of the Model 

The next step in the flight test sequence is to 
predict the thrust available from the engine. Session 
5 gave the relation: 

T = qod2
2 2Vk(RPM) + k(RPM)2 

4 

The model maker has provided the following 
information for use in this equation:

 Propeller diameter (d): 9 inches (0.75 ft)
 Propeller efficiency (k): 0.00066 
Max engine RPM:  1250 RPM 

NOTE: 
For most models, propeller constants range 
between 0.00044 and 0.00070. Tests to determine 
actual k values are very involved. Therefore, 
should you decide to conduct a test similar to the 
one shown in the video, an average propeller 
constant of 0.00057 can be used. 

The air density at the test site is 0.002 slugs/ft3. 
By examining the equation, we see a velocity term 
in the second set of brackets. However, for a static 
thrust check, the velocity is zero. Therefore, 
substituting into the thrust relationship gives: 

T s o0.75ft 2
= 0.002 lugs 2 0 + 0.00066(1250)2 

ft3 4 

T = 1.82 lbs 

To verify this value, a spring scale is attached 
to the model. With the engine operating at 
maximum RPM, the scale reading is 1.5 lbs.  To 
predict the takeoff performance, the 1.5 pounds of 
static thrust determined experimentally should be 
used in the calculations. 

Measuring Engine Thrust 

NOTE: 
This is 21% less power than predicted. This 
highlights an important aspect of testing. The 
numbers for RPM and propeller efficiency 
provided by the manufacturer are for a brand new 
engine under carefully controlled test conditions. 
The engine on the model is a number of years old 
and the propeller has a considerable number of 
"nicks" on the blades. Each of these factors 
detracts from the amount of thrust the engine can 
produce. This is why we test the thrust using a 
scale. 

4.0 Determining Takeoff Speed 

Recall from Session 6 that the lowest speed at 
which the lift just equals the aircraft's weight is the 
takeoff speed. This speed is determined by the 
relationship: 

w = L = 1 
2 qV 2SCLmax 

Rearranging this equation to solve for takeoff 
speed gives: 

1 

2w 2 

V = qSCL 

In order to determine the wing area, the video 
depicted measuring; 

- the chord length,	 c, (distance from leading 
edge to the trailing edge of the wing) 

- the wing span, b, (distance from one wingtip 
to the other) 
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To determine the area of the rectangular wing, 
simply multiply the chord length times the span 
length, or 

S = c ·b 

For the model being tested, the chord length is 
8.5 inches (0.7083 ft) and the wing span is 52 
inches (4.33 ft). Multiply these values and we find 
the wing area is 3.07 square feet. 

Determining Wing Area

 Caution: 

It's important to convert all units into feet and 
pounds prior to performing the calculations for 
takeoff speed, lift, drag, and thrust. 

The next item needed for the takeoff speed 
calculation is the air density. For the temperature 
and air pressure measured on the day of the test, 
the density, r, was found to be 0.002 slugs/ft3. 
This may vary for your test. All we need now is 
the overall lift coefficient. 

The lift coefficient is usually found by wind 
tunnel analysis. In this case, the model maker 
didn't provide this data. A conservative number for 
an aircraft without flaps and a rectangular wing is 
CL = 1.1. This is a reasonable assumption and can 
be used for most model applications. 

Applying these numbers to the takeoff speed 
equation: 

1 

2w 2 

V = qSCL 

1 
2 

2(4.19lbs)
V = 

0.002 slugs (3.07ft2 )(1.1)ft3 

V = 35.2 ft/sec (24 MPH) 

This speed will be used in determining the drag 
on the aircraft during the takeoff roll. 

5.0 Determining the Drag 

Session 6 said that engineers have learned 
through experience, if seventy percent of the 
takeoff speed is used to calculate the drag during 
takeoff, the results are very close to the average 
drag. 70% of the speed just calculated is 0.70 
times 35.2 ft/sec or 24.6 ft/sec. 

Next the drag coefficient, CD, should be 
determined. Again, this is usually found in a wind 
tunnel. However, for the type of model used in this 
test, a good estimated value of CD is 0.06. 

The drag equation is: 

D = 1
2 qV 2SCD 

Using the values for wing area, density, 70% of 
takeoff speed, and drag coefficient, the predicted 
average drag during the takeoff is: 

D = 1 0.002 slugs (24.6 ft )2(3.07ft2 
2 sec )(0.06)ft3 

D = 0.1115 lbs 

This value and the measured value for thrust 
are used to calculate the expected acceleration 
during takeoff. 

6.0 Determining the Acceleration 

Using Newton's F = ma equation, we can 
define acceleration in the same manner as outlined 
in Session 6. This yields: 

F = T - D = ma 

when we rearrange the equation, we can solve 
for the acceleration: 

= T - Da m 

10.3
 



 

     

Session 10
 
Summary and Review
 

= g(T - D) 
a w 

Inserting the appropriate values (remember 
g = 32.2 ft 

sec2 ) gives: 

= 1.5lbs - 0.1115lbs a 32.2 ft 
sec2 4.19lbs 

a = 10.67 ft 
sec2 

To determine the time required to accelerate to 
takeoff speed, use the following relationship; 

takeoff speed 
time = acceleration rate 

35.2 ft 

time = sec 

10.67 ft 
sec2 

time =  3.3 sec 

In Session 6, it was stated if we assume the 
acceleration rate is constant, a plot of velocity 
versus time can be constructed. The acceleration 
rate is simply the slope of this curve.  So if we use 
this relationship, the takeoff distance is determined. 

7.0 Determining Takeoff Distance 

Since the acceleration is assumed to be 
constant, the slope of the plot is a straight line. 
Using the right triangle equation, Session 6 showed 
that the area under the triangle is equal to the 
estimated takeoff distance. 

V
el

oc
ity

 

Vtakeoff 

time 

area = 1
2 (base % height) 

area = 1
2 (takeoff speed % time required to takeoff)

 = takeoff distance 

Substituting the appropriate values into this 
equation: 

area = 1
2 (35.2 ft 

sec % 3.3 sec)

area = takeoff distance = 58 ft 

During the first takeoff of the model, the 
takeoff distance was measured at 85 feet. To 
account for the increased takeoff roll, we must 
account for rolling friction. 

Rolling Friction 

From Session 6, the rolling friction is given as: 
Friction = mw 

where m is the coefficient of friction for the surface 
the aircraft is rolling over. The surface of the 
"runway" used in the video is dirt with rocks and 
holes throughout. The handbook value of m is 0.1, 
for surface conditions of the runway. To account 
for friction we use Newton's equation again: 

F = (T - D - mw) = ma 

and calculate the new acceleration rate:
 

g(T - D - lw)
 
a = w 

32.2 ft 
sec2 [1.5lbs - 0.115lbs - 0.1(4.19lbs)] 

a = 4.19lbs 

a = 7.45 ft 
sec2 

So, to estimate the new time required to 
accelerate to takeoff speed: 

takeoff speed 
time = acceleration rate 
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35.2 ft 

time = sec 

7.45 ft 
sec2 

time = 4.72 sec 

Taking these factors into consideration, the 
new estimated takeoff distance should be: 

area = 1
2 (takeoff speed % time required to takeoff)

 = takeoff distance 

area = 1
2 (35.2 ft 

sec % 4.72 sec)

takeoff distance = 83.1 ft 

This takeoff distance was within 2 feet of the 
actual distance required for the first takeoff. On a 
subsequent takeoff the distance required was 86 
feet. This further substantiates our analysis. 

8.0  Conclusion 

The techniques used to flight test aircraft rely 
heavily upon Newton's Three Laws of Motion. 
Although some simplifying assumptions have been 
made to the aerodynamic relationships, the basic 
concepts remain valid regardless of the size of the 
aircraft. We demonstrated this by testing of a R/C 
Model. Further experiments are outlined in the 
section titled "Culminating Activities."  We hope 
you find them interesting and challenging. 
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