Climate Change Science Program, Synthesis and Assessment

Product (SAP) 5.1

Uses and Limitations of Observations, Data, Forecasts,
And Other Projections in Decision Support for Selected
Sectors and Regions
Table of Contents

Preface – To be completed

Executive Summary – page 1

Introduction – page 12

Chapters:

1. Decision Support for Agricultural Efficiency – page 14

2. Decision Support for Air Quality – page 23


4. Decision Support for Public Health – page 44

5. Decision Support for Water Resources – page 51
Appendix A: References by Chapter – page 60

Appendix B: List of Figures by Chapter – page 74

Appendix C: Glossary, Acronyms, Symbols &, Abbreviations – page 75
Executive Summary

Earth information – the diagnostics of Earth’s climate, water, air, land, and other dynamic processes - is essential for our understanding of humankind’s relationship to our natural resources and our environment. Earth information can inform our scientific knowledge, our approach to resource and environmental management and regulation, and our stewardship of Earth for future generations. New data sources, new ancillary and complementary technologies in hardware and software, and ever-increasing modeling and analysis capabilities characterize the current and prospective states of Earth science and are a harbinger of its promise. A host of Earth science data products is enabling a revolution in our ability to understand climate and its anthropogenic and natural variations. Crucial to this relationship, however, is understanding and improving the integration of Earth science information in the activities that support decisions underlying national priorities – ranging from homeland security and public health to air quality and natural resource management.

Also crucial is the role of this information in improving our understanding of the processes and effects of climate as it influences or is influenced by actions taken in response to national priorities. Global change observations, data, forecasts, and projections are integral to informing climate science.

This Synthesis and Assessment Product (SAP), “Uses and Limitations of Observations, Data, Forecasts, and Other Projections in Decision Support for Selected Sectors and Regions” (SAP 5.1) examines the current and prospective contribution of Earth science information in decision support activities and their relationship to climate change science. The SAP contains a characterization and catalog of observational capabilities in an illustrative set of decision support activities. It also contains a description of the
challenges and promise of these capabilities and discusses the interaction between users and producers of information (including the role, measurement, and communication of uncertainty and confidence levels associated with decision support outcomes and their related climate implications).

Decision Support Tools and Systems

In 2002, NASA formulated a conceptual framework in the form of a flow chart (figure 1) to characterize the link between NASA Earth science data and their potential contribution to resource management and public policy. The framework begins with Earth observations that are inputs into Earth system models that simulate the dynamic processes of land, the atmosphere, and the oceans. These models lead in turn to predictions and forecasts to inform “decision support tools.”

In this framework, decision support tools (DSTs) are typically computer-based models assessing such phenomena as resource supply, the status of real-time events (for example, forest fires, flooding), or relationships among environmental conditions and other scientific metrics (for instance, water-borne disease vectors and epidemiological data). These tools use data, concepts of relations among data, and analysis functions to allow analysts to build relationships, including spatial, temporal, and process-based, among different types of data; merge layers of data; generate model outcomes; and make predictions or forecasts. Decision support tools are an element of the broader decision making context, or “decision support system.” Decision support systems (DSSs) include not just computer tools but the institutional, managerial, financial, and other constraints involved in decision making.

The outcomes in these decision frameworks are intended to enhance our ability to manage resources (management of public lands, measurements for air quality and other environmental regulatory compliance) and evaluate policy alternatives (as promulgated in legislation or regulatory directives) affecting local, state, regional, national, or even international actions. To be sure, and for a variety of reasons, many decisions are not based on data or models. In some cases, formal modeling is not appropriate, timely, or feasible for all decisions. But among decisions that are influenced by this information, the flow chart above characterizes a systematic approach for science to be connected to decision processes.
Figure 1: The flow of information associated with decision support in the context of variability and change in climate and related systems. Source: CCSP Product 5.1 Prospectus, Appendix D.

For purposes of providing an organizational framework, the CCSP provides additional description of decision support:

“In the context of activities within the CCSP framework, decision-support resources, systems, and activities are climate-related products or processes that directly inform or advise stakeholders in order to help them make decisions. These products or processes include analyses and assessments, interdisciplinary research, analytical methods...
Our Approach

Our approach to this SAP has involved two overall tasks. The first task defines and describes an illustrative set of decision support tools in areas selected from a number of areas deemed nationally important by NASA and also included in societal benefit areas identified by the intergovernmental Group on Earth Observations in leading an international effort to build a Global Earth Observation System of Systems (see Tables 1 and 2).

Table 1: List of NASA National Applications Areas (Appendix B, CCSP SAP 5.1 Prospectus).

<table>
<thead>
<tr>
<th>Nationally Important Applications</th>
<th>Nationally Important Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Efficiency</td>
<td>Ecological Forecasting</td>
</tr>
<tr>
<td>Air Quality</td>
<td>Energy Management</td>
</tr>
<tr>
<td>Aviation</td>
<td>Homeland Security</td>
</tr>
<tr>
<td>Carbon Management</td>
<td>Invasive Species</td>
</tr>
<tr>
<td>Coastal Management</td>
<td>Public Health</td>
</tr>
<tr>
<td>Disaster Management</td>
<td>Water Management</td>
</tr>
</tbody>
</table>

The areas we have chosen as our focus are air quality, agricultural efficiency, energy management, and public health. As required by the SAP 5.1 Prospectus, in the case studies we:

- explain the observational capabilities that are currently or potentially used in these tools;
• identify the agencies and organizations responsible for their development, operation, and
  maintenance;

• characterize the nature of interaction between users and producers of information in delivering
  accessing and assimilating information;

• discuss sources of uncertainty associated with observational capabilities and the decision tools and
  how they are conveyed in decision support context and to decisionmakers; and

• describe relationships between the decision systems and global change information, such as
  whether the tools at present or in the future use, or could contribute to, climate-related predictions
  or forecasts.

Table 2. Societal benefit areas identified by the Group on Earth Observations for the Global Earth
Observations System of Systems (http://www.earthobservations.org/about/about_GEO.html) (accessed
May 2007)

<table>
<thead>
<tr>
<th>GEOSS Socio-Benefit Area Keywords</th>
<th>GEOSS Socio-Benefit Area Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health</td>
<td>Understanding environmental factors affecting human health and well-being</td>
</tr>
<tr>
<td>Disasters</td>
<td>Reducing loss of life and property from natural and human-induced disasters</td>
</tr>
<tr>
<td>Forecasts</td>
<td>Improving weather information, forecasting and warning</td>
</tr>
<tr>
<td>Energy</td>
<td>Improving management of energy resources</td>
</tr>
<tr>
<td>Water</td>
<td>Improving water resource management through better understanding of the water cycle</td>
</tr>
<tr>
<td>Climate</td>
<td>Understanding, assessing, predicting, mitigating, and adapting to climate variability and change</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Supporting sustainable agriculture and combating desertification</td>
</tr>
<tr>
<td>Ecology</td>
<td>Improving the management and protection of terrestrial,</td>
</tr>
</tbody>
</table>
Because our purpose in this first task is to offer case studies by way of illustration rather than a comprehensive treatment of all DSTs in all national applications, in our second task we have taken steps to catalog other DSTs which use or may use, or which could contribute to, forecasts and projections of climate and global change. The catalog is an exciting first step toward an ever-expanding inventory of existing and emerging DSTs. The catalog can be maintained on-line for community input, expansion, and updating to provide a focal point for information about the status of DSTs and how to access them.

The information we collected for this report is largely from the published literature and interviews with the sponsors and stakeholders of the decision processes, as well as publications by and interviews with the producers of the scientific information used in the tools.

Our Case Studies

The DSTs we illustrate are:

1. The Production Estimate and Crop Assessment Division and its Crop Condition Data Retrieval and Evaluation system (PECAD/CADRE) of the US Department of Agriculture, Foreign Agricultural Service (FAS). PECAD/CADRE is the world’s most extensive and longest running (over two decades) operational user of remote sensing for evaluation of worldwide agricultural productivity.

2. The Community Multiscale Air Quality (CMAQ) modeling system of the U.S. Environmental Protection Agency (EPA). CMAQ is the most widely used, U.S. regional scale air quality decision support tool.

3. The Hybrid Optimization Model for Electric Renewables (HOMER), a micropower optimization model of the US Department of Energy’s National Renewable Energy Laboratory (NREL). HOMER is used around the world to optimize deployment of renewable energy technologies.
4. Decision Support System to Prevent Lyme Disease (DDSPL) of the US Centers for Disease Control and Prevention (CDC) and Yale University. DDSPL seeks to prevent the spread of the most common vector-borne disease, Lyme disease, of which there are tens of thousands of cases annually in the United States.

5. Riverware, developed by the University of Colorado-Boulder’s Center for Advanced Decision Support for Water and Environmental Systems (CADSWES) in collaboration with the Bureau of Reclamation, Tennessee Valley Authority, and the Army Corps of Engineers, is a hydrologic or river basin modeling system that integrates features of reservoir systems such as recreation, navigation, flood control, water quality, and water supply in a basin management tool with power system economics to provide basin managers and electric utilities a method of planning, forecasting, and scheduling reservoir operations.

Taken together, these DSTs demonstrate a rich variety of applications of observations, data, forecasts, and other predictions. In three of our studies, agricultural efficiency, air quality, water management and energy management, the DSTs have become well established as a basis for public policy decision making. In the case of public health, our lead author points out reasons why direct applications of Earth observations to public health have tended to lag these other applications and thus is a relatively new applications area. He also reminds us that management of air quality, agriculture, water, and energy -- in and of themselves -- have implications for the quality of public health. The decision support system he selects is a new, emerging tool intended to assist in prevention of the spread of infectious disease.

Our selection also varies in the geographic breadth of application, illustrating how users of these tools tailor them to relevant regions of analysis and how in some cases, the geographic coverage of the tools carries over to their requirements for observations. For instance, PECAD/CADRE is used for worldwide study of agricultural productivity and has data requirements of wide geographic scope, HOMER can be used for renewable energy optimization throughout the world, and DDSPL focuses on the Eastern, upper mid-west, and West Coast portions of the United States. CMAQ is used to predict air quality for the contiguous
United States as well as regions and urban locales. RiverWare provides basin managers and electric utilities a method of planning, forecasting, and scheduling reservoir operations.

Overview of the Chapters

We next summarize the case studies. For each, we describe the DST and its data sources, highlight potential uses as well as limits of the DSTs, note sources of uncertainty in using the tools, and finally, discuss the link between the DST and climate change and variability. After our summary, we offer general observations about similarities and differences among the studies.

Agricultural Efficiency: The Production Estimate and Crop Assessment Division (PECAD) of the US Department of Agriculture, Foreign Agricultural Service (FAS) is the world’s most extensive and longest running operational user of remote sensing data for evaluation of worldwide agricultural productivity. PECAD supports the FAS mission to collect and analyze global crop intelligence information and provide periodic estimates used to inform official USDA forecasts for the agricultural market, including farmers, agribusiness, commodity traders and researchers, and federal, state, and local agencies. PECAD is often referred to as "CADRE/PECAD" with one of its major automated components known as the Crop Condition Data Retrieval and Evaluation geospatial database management system (CADRE). Of all the DSTs we consider in this report, CADRE has the longest pedigree as the operational outcome of two early, experimental earth observations projects during the 1970s and 1980s, the Large Area Crop Inventory Experiment (LACIE) and the Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing (AgRISTARS).

Sources of data for CADRE include a large number of weather and other earth observations from U.S., European, Japanese, and commercial systems. PECAD combines these data with crop models, a variety of GIS tools, and a large amount of contextual information, including official government reports, trade and news sources, and on-the-ground reports from a global network of embassy attaches and regional analysts.
Potential future developments in PECAD/CADRE could include space-based observations of atmospheric carbon dioxide measurements and measurement of global sea surface salinity to improve understanding of the links between the water cycle, climate and oceans. Other opportunities for enhancing PECAD/CADRE include improvements in predictive modeling capabilities in weather and climate.

One of the largest technology gaps in meeting PECAD requirements is the practice of designing earth observation systems for research rather than operational use, limiting the ability of PECAD/CADRE to rely on data sources from non-operational systems. PECAD analysts require dependable inputs, implying use of operational systems that ensure continuous data streams and that minimize vulnerability to component failure through redundancy.

Sources of uncertainty can arise at each stage of analysis, from the accuracy of data inputs to the assumptions in modeling. PECAD operators have been able to benchmark, validate, verify and then selectively incorporate additional data sources and automated decision tools by way of detailed engineering reviews. Another aspect of resolving uncertainty in PECAD is extensive use of a convergence methodology to assimilate information from regional field analysts and other experts. This convergence of evidence analysis” seeks to reconcile various independent data sources to achieve a level of agreement to minimize estimate error.

The relationship between climate and agriculture is complex, as agriculture is influenced not only by a changing climate, but agricultural practices themselves are a contributory factor – for example, in affecting land use and influencing carbon fluxes. At present, PECAD is not directly used to address these dimensions of the climate-agriculture interaction. However, many of the data inputs for PECAD are climate-related, thereby enabling PECAD to inform understanding of agriculture as a “recipient” of climate-induced changes. For instance, observing spatial and geographic trends in the output measures from PECAD can contribute to understanding how the agricultural sector is responding to a changing climate. Likewise, trends in PECAD’s measures of the composition and production of crops could shed light on the agricultural sector as a “contributor” to climate change (for instance, in terms of greenhouse gas emissions
or changes in soil that may affect the potential for agricultural soil carbon sequestration). PECAD may also be influenced by, as well as a barometer of climate-induced changes in land use, such as conversion from food production to biomass fuel production.

**Air Quality:** The EPA CMAQ (Community Multiscale Air Quality) modeling system has been designed to approach air quality as a whole by including state-of-the-science capabilities for modeling multiple air quality issues, including tropospheric ozone, fine particles, toxics, acid deposition, and visibility degradation. CMAQ is used as one of the key regional air quality models based on state-of-the-science. It was designed to evaluate longer-term pollutant climatologies as well as short-term transport from localized sources, and it can be used to perform simulations using downscaled regional climate from global climate change scenarios. Besides forecasting air quality, CMAQ is used to guide the development of air quality regulations and standards and to create state implementation plans for managing air emissions.

The CMAQ modeling system contains three types of modeling components: a meteorological modeling system for the description of atmospheric states and motions, emission models for man-made and natural emissions that are injected into the atmosphere, and a chemistry-transport modeling system for simulation of the chemical transformation and fate. Inputs for CMAQ, and its associated regional meteorological model, mesoscale model version 5 (MM5), can include, but is not limited to, the comprehensive output from a general circulation model, anthropogenic and biogenic emissions, description of wildland fires, land use and demographic changes, meteorological and atmospheric chemical species measurements by in-situ and remote sensing platforms, including satellites and airplanes.

CMAQ can be used to study questions such as: How will present and future emission changes affect attainment of air quality standards? Will present and future emissions and/or climate/meteorological changes affect the frequency and magnitudes of high pollution events? How will land use changes due to urbanization and global warming affect air quality? How does the long-range air pollution transport to the US from other regions affect our air quality? How will changes in the long-range transport due to the climate change affect air quality? How does wildland fire affect air quality and will climate change affect
wildland fire and subsequently air quality? How sensitive are the air quality predictions to changes in both
anthropogenic and biogenic emissions?

Energy Management: The Hybrid Optimization Model for Electric Renewables (HOMER) is a
micropower optimization model of the US Department of Energy’s National Renewable Energy
Laboratory. HOMER is able to calculate emission reductions enabled by replacing diesel-generating
systems with renewable energy systems in a micro-grid or grid-connected configuration. HOMER helps the
user design grid-connected and off-grid renewable energy systems by performing a wide range of design
scenarios, addressing questions such as: Which technologies are most cost-effective? What happens to the
economics if the project’s costs or loads change? Is the renewable energy resource adequate for the
different technologies being considered to meet the load? HOMER does this by finding the least-cost
combination of components that meet electrical and thermal loads.

The earth observation information serving as input to HOMER is centered on wind and solar resource
assessments derived from a variety of sources. Wind data include surface and upper air station data,
satellite-derived ocean and ship wind data, and digital terrain and land cover data. Solar resource data
include surface cloud, radiation, aerosol optical depth, and digital terrain and land cover data.

All of the input data for HOMER can have a level of uncertainty attached to them. HOME allows the user
to perform sensitivity tests on one or more variables and has graphical capabilities to display these results
to inform decisionmakers. As a general rule, the error in estimating the performance of a renewable energy
system over a year is roughly linear to the error in the input resource data.

One of the largest challenges in HOMER is the absence of direct or in-situ solar and wind resource
measurements at specific locations to which HOMER is applied. In addition, in many cases, values are not
based on direct measurement at all but are approximations based on the use of algorithms to convert a
signal into the parameter of interest. For example, satellite-derived ocean wind data are not based on direct
observation of the wind speed above the ocean surface but from an algorithm that infers wind speed based
on wave height observations. Observations of aerosol optical depths (for which considerable research is underway) can be complicated by irregular land-surface features that complicate application of algorithms for satellite-derived measures.

For renewable energy resource mapping, improved observations of key weather parameters (for instance, wind speed and direction at various heights above the ground, particularly at the hub height of wind energy turbine systems, and over the open oceans at higher and higher spatial resolutions, improved ways of differentiating snow cover and bright reflecting surfaces from clouds) will be of value to the renewable energy community. New, more accurate methods of related parameters such as aerosol optical depth would also improve the resource data.

The relationship between HOMER and global change information is largely by way of the dependence of renewable energy resource input measurements on weather and local climate conditions. Although HOMER was not designed to be a climate-related management decisionmaking tool, by optimizing the mix of hybrid renewable energy technologies for meeting load conditions, HOMER also enables users to respond to climate change and variability in their energy management decisions. HOMER could be deployed to evaluate how renewable energy systems can be used cost-effectively to displace fossil-fuel-based systems.

Public Health: The Decision Support System to Prevent Lyme Disease (DDSPL) is operated by the US Centers for Disease Control and Prevention and Yale University to address questions related to the likely distribution of Lyme disease east of the 100th meridian, where most cases occur. Lyme disease is the most common vector-borne disease in the United States, with tens of thousands of cases annually. Most human cases occur in the Eastern and upper Mid-West portions of the U.S., although there is a secondary focus along the West Coast. Vector-borne diseases are those in which parasites are transmitted among people or from wildlife to people by insects or arthropods (as vectors, they do not themselves cause disease). The black-legged tick is typically the carrier of the bacteria causing Lyme disease.
Early demonstrations during the 1980s showed the utility of earth observations for identifying locations and times that vector-borne diseases were likely to occur, but growth of applications has been comparatively slow. Earth observing instruments have not been designed to monitor disease risk; rather, data gathered from these platforms are “scavenged” for public health risk assessment. DDSPL uses satellite data and derived products such as land cover together with meteorological data and census data to characterize statistical predictors of the presence of black-legged ticks. The model is validated by field surveys. The DDSPL is thus a means of setting priorities for the likely geographic extent of the vector; the tool does not at present characterize the risk of disease in the human population.

Future use of DDSPL partly depends on whether the goal of disease prevention or the goal of treatment drives public health policy decisions. In addition, studies have shown that communication to the public about the risk in regions with Lyme disease often fails to reduce the likelihood of infection. Use of the DDSPL is also limited by restrictions on the dissemination of detailed information on the distribution of human disease. The role of improved earth science data is unclear in terms of improving the performance of DDSPL because at present, the system has a level of accuracy deemed “highly satisfactory.” Future use may instead require a model of sociological/behavioral influences among the population.

Standard statistical models and in-field validation are used to assess the uncertainty in decision making with DDSPL. The accuracy of clinical diagnoses also influences the ultimate usefulness of DDSPL as an indicator tool to characterize the geographic extent of the vectors.

The DDSPL is one of the few public health DSTs that has explicitly evaluated the effects of climate variability. Using outputs of a Canadian climate change model, study has shown that with warming global mean temperatures, by 2050 and 2080 the geographic range of the tick vector will decrease at first, with reduced presence in the southern boundary, and then expand into Canada and the central region of North America where it now absent. The range also moves away from population concentrations.
**Water Management:** RiverWare was developed and is maintained by CADSWES in collaboration with the Bureau of Reclamation, Tennessee Valley Authority, and the Army Corps of Engineers. It is a river basin modeling system that integrates features of reservoir systems such as recreation, navigation, flood control, water quality, and water supply in a basin management tool with power system economics to provide basin managers and electric utilities a method of planning, forecasting, and scheduling reservoir operations. Riverware uses an object-oriented (OO) software engineering approach in model development. The OO software-modeling strategy allows computational methods for new processes, additional controllers for providing new solution algorithms, and additional objects for modeling new feature to be added easily to the modeling system. Riverware is data intensive in that a specific river/reservoir system and its operating policies must be characterized by the data supplied to the model. This allows the models to be modified as new features are add to the river/reservoir system and/or new operating policies are introduced. The data intensive feature allows the model to used for water management in most river basins.

Riverware is menu driven through a graphical user interface (GUI). The basin topology is developed through the selection of a reservoir, reach, confluence, and other necessary objects, and by entering the data associated with each object manually or through importing file. Utilities within RiverWare provide a means to automatically execute many simulations, to access data from external sources and to export model results. Users also define operating policies through the GUI as system constraints or rules for achieving system management goals (e.g., related to flood control, water supplies, water quality, navigation, recreation, power generation). The direct use of earth observations in RiverWare is limited. Unlike traditional hydrologic models that track the transformation of precipitation (e.g., rain, snow) into soil moisture and streamflow, RiverWare uses supplies of water to the system as input data. Application of RiverWare is limited by the specific implementation defined by the user and by the quality of the input data. RiverWare has tremendous flexibility in the kinds of data it can use, but long records of data are required to overcome the issue of data non-stationarity.

RiverWare does not rely on global change information. The specific application of RiverWare in the context of mid- or long-range planning for a specific river basin will reflect whether decisions may rely on
global change information. For mid-range planning of reservoir operations, characterization and projections of interannual and decadal-scale climate variability (e.g., monitoring, understanding, and predicting interannual climate phenomena such as the El Nino-Southern Oscillation) are important. For long-term planning, global warming has moved from the realm of speculation to general acceptance. The impacts of global warming on water resources, and their implications for management, have been a major focus in the assessments of climate change. The estimates of potential impacts of climate change on precipitation have been mixed, leading to increasing uncertainty about the reliability of future water supplies.

**General Observations**

Application of all of the DSTs involves a variety of input data types, all of which have some degree of uncertainty in terms of their accuracy. The amount of uncertainty associated with resource data can depend heavily on how the data are obtained. Quality in-situ measurements of wind and solar data suitable for application in HOMER are can have uncertainties of less than ±3% of true value; however, when estimation methods are required, such as the use of earth observations, modeling, and empirical techniques, uncertainties can be as much as ±10% or more. The DSTs address uncertainty by allowing users to perform sensitivity tests on variables. With the exception of HOMER, a significant amount of additional traditional on-the-ground reports are a critical component. In the case of PECAD/CADRE, uncertainty is resolved in part by extensive use of a convergence methodology to assimilate information from regional field analysts and other experts. This brings a large amount of additional information to PECAD/CADRE forecasts, well beyond the automated outputs of decision support tools. In RiverWare, streamflow and other hydrologic variables respond the atmospheric factors such as precipitation and obtaining quality precipitation estimates is a formidable challenge, especially in the western U.S. where orographic effects produce large spatial variability and where there is a scarcity of real-time precipitation observations and poor radar coverage.

In terms of their current or prospective use of climate change predictions or forecasts as DST inputs, or the contributions of DST outputs to understanding, monitoring, and responding to a changing climate, the status is mixed. DDSPL is one of the few public health decision support tools that has explicitly evaluated
the potential impact of climate change scenarios on an infectious disease system. None of the other DSTs at present is directly integrated with climate change measurements, but all of them can and may in the future take this step. PECAD/CADRE’s assessment of global agricultural production will certainly be influenced by observations and forecasts of climate change and variability as model inputs, just as the response of the agricultural sector to a changing climate will feedback into PECAD/CADRE production estimates.

HOMER’s renewable energy optimization calculations will directly be affected by climate-related changes in renewable energy resource supplies, and will enhance our ability to adapt to climate-induced changes in energy management and forecasting. Air quality will definitely be affected by global climate change. The ability of CMAQ to predict those affects is conditional on acquiring accurate predictions of the meteorology under the climate change conditions that will take place in the United States and accurate emission scenarios for the future. Given these inputs to CMAQ, reliable predictions of the air quality and their subsequent health affects can be ascertained. It was noted that there is great difficulty in integrating climate change information into RiverWare and other such water management models. The multiplicity of scenarios and vague attribution of their probability for occurrence, which depend on feedbacks among social, economic, political, technological, and physical processes, complicate conceptual integration of climate change impacts assessment results in a practical water management context. Furthermore, the century timescales of climate change exceed typical planning and infrastructure design horizons in water management.

Audience and Intended Use

The CCSP SAP 5.1 Prospectus describes the audience and intended use of this report:

This synthesis and assessment report is designed to serve decision makers and stakeholder communities interested in using global change information resources in policy, planning, and other practical uses. The goal is to provide useful information on climate change research products that have the capacity to inform decision processes. The report will also be valuable to the climate change science community because it will indicate types of information generated through the processes of observation and research.
that are particularly valuable for decision support. In addition, the report will be useful for shaping the future development and evaluation of decision-support activities, particularly with regard to improving the interactions with users and potential users.

There are a number of national and international programs focusing on the use of Earth observations and related prediction capacity to inform decision support tools (see Table 3, “Related National and International Activities”). These programs both inform and are informed by the CCSP and are recognized in the development of this product. (CCSP Synthesis and Assessment Product 5.1, Prospectus for “Uses and Limitations of Observations, Data, Forecasts, and Other Projections in Decision Support for Selected Sectors and Regions,” 28 February 2006)

Table 3. References to Related National and International Activities (Source: Appendix C, CCSP SAP 5.1 Prospectus)

<table>
<thead>
<tr>
<th>Priority</th>
<th>National</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate Change</td>
<td>Climate Change Science Program, Climate Change Technology Program</td>
<td>Intergovernmental Panel on Climate Change, World Climate Research Programme</td>
</tr>
<tr>
<td>Weather</td>
<td>U.S. Weather Research Program (USWRP)</td>
<td>World Meteorological Organization</td>
</tr>
<tr>
<td>Natural Hazards</td>
<td>NSTC CENR Subcommittee on Disaster Reduction</td>
<td>International Strategy for Disaster Reduction</td>
</tr>
<tr>
<td>Sustainability</td>
<td>NSTC CENR Subcommittee</td>
<td>World Summit on Sustainable</td>
</tr>
</tbody>
</table>
Earth information – the diagnostics of Earth’s climate, water, air, land, and other dynamic processes - is essential for our understanding of humankind’s relationship to our natural resources and our environment. This information can inform our scientific knowledge, our approach to resource and environmental management and regulation, and our stewardship of Earth for future generations. New data sources, new ancillary and complementary technologies in hardware and software, and ever-increasing modeling and analysis capabilities enhances our ability to characterize the current and prospective states of Earth science and are a harbinger of its promise. The host of Earth science data products is enabling a revolution in our ability to understand climate and its anthropogenic and natural variations. Crucial to this relationship, however, is understanding and improving the integration of Earth science information in the activities that
support decisions underlying national priorities – ranging from homeland security and public health to air
quality and natural resource management. Also crucial is the role of this information in improving our
understanding of the processes and effects of climate as it influences or is influenced by actions taken in
response to national priorities. Global change observations, data, forecasts, and projections are integral to
informing climate science.

This Synthesis and Assessment Product (SAP), “Uses and Limitations of Observations, Data, Forecasts,
and Other Projections in Decision Support for Selected Sectors and Regions” (SAP 5.1) examines the
current and prospective contribution of Earth science information in decision support activities and their
relationship to climate change science. The SAP contains a characterization and catalog of observational
capabilities in an illustrative set of decision support activities. It also contains a description of the
challenges and promises of these capabilities and discusses the interaction between users and producers of
information (including the role, measurement, and communication of uncertainty and confidence levels
associated with decision support outcomes and their related climate implications).

The organizing basis for the chapters in this SAP is the decision support system (DSS) and the decision
support tools (DSTs), which are typically computer-based models assessing such phenomena as resource
supply, the status of real-time events (for example, forest fires, flooding), or relationships among
environmental conditions and other scientific metrics (for instance, water-borne disease vectors and
epidemiological data). These tools use data, concepts of relations among data, and analysis functions to
allow analysts to build relationships, including spatial, temporal, and process-based, among different types
of data; merge layers of data; generate model outcomes; and make predictions or forecasts. DSTs are an
element of the broader decision making context, the DSS. DSSs include not just computer tools but also the
institutional, managerial, financial, and other constraints involved in decision making.

Our approach to this SAP is to define and describe an illustrative set of DSTs in areas selected from topics
deemed nationally important by NASA and also included in societal benefit areas identified by the
intergovernmental Group on Earth Observations in leading an international effort to build a Global Earth
Observation System of Systems. The areas we have chosen as our focus are air quality, agricultural efficiency, energy management, water management, and public health. The DSTs we illustrate are:

1. The Production Estimate and Crop Assessment Division and its Crop Condition Data Retrieval and Evaluation system (PECAD/CADRE) of the US Department of Agriculture, Foreign Agricultural Service (FAS). PECAD/CADRE is the world’s most extensive and longest running (over two decades) operational user of remote sensing for evaluation of worldwide agricultural productivity.

2. The Community Multiscale Air Quality (CMAQ) modeling system of the U.S. Environmental Protection Agency (EPA). CMAQ is the most widely used, U.S. regional scale air quality decision support tool.

3. The Hybrid Optimization Model for Electric Renewables (HOMER), a micro power optimization model of the US Department of Energy’s National Renewable Energy Laboratory (NREL). HOMER is used around the world to optimize deployment of renewable energy technologies

4. The Decision Support System to Prevent Lyme Disease (DDSPL) of the US Centers for Disease Control and Prevention (CDC) and Yale University. DDSPL seeks to prevent the spread of the most common vector-borne disease, Lyme disease, of which there are tens of thousands of cases annually in the United States.

5. Riverware, developed by the University of Colorado-Boulder’s Center for Advanced Decision Support for Water and Environmental Systems (CADSWES) in collaboration with the Bureau of Reclamation, Tennessee Valley Authority, and the Army Corps of Engineers, is a hydrologic or river basin modeling system that integrates features of reservoir systems such as recreation, navigation, flood control, water quality, and water supply in a basin management tool with power system economics to provide basin managers and electric utilities a method of planning, forecasting, and scheduling reservoir operations.

Taken together, these DSTs demonstrate a rich variety of applications of observations, data, forecasts, and other predictions. In four of our studies, agricultural efficiency, air quality, water management, and energy...
management, the DSTs have become well established as a basis for public policy decision making. In the case of public health, our lead author points out reasons why direct applications of Earth observations to public health have tended to lag these other applications and thus are a relatively new applications area. He also reminds us that management of air quality, agriculture, water, and energy -- in and of themselves -- have implications for the quality of public health. The decision support system he selects is a new, emerging tool intended to assist in prevention of the spread of infectious disease.
Chapter 1

Decision Support for Agricultural Efficiency

Lead Author: Molly K. Macauley

1. Introduction

The efficiency of agriculture has been one of the most daunting challenges confronting mankind in its need to use natural resources under the constraints of weather, climate, and other since environmental conditions. Defined as maximizing output per unit of input, agricultural efficiency reflects a complex relationship among factors of production (including seed, soil, human and physical capital) and the exogenous influence of nature (such as temperature, sunlight, weather, climate). The interaction of agricultural activity with the environment creates another source of interdependence, such as that involving the effect on soil and water of applications of pesticides, fungicides, and fertilizer. Agricultural production has long been a large component of international trade and of strategic interest as an indicator of the health and security of nations.

The relationship between climate change and agriculture is complex. Agriculture is not only influenced by a changing climate, but agricultural practices themselves are a contributory factor through emissions of greenhouse gases and influences on fluxes of carbon through photosynthesis and respiration. In short, agriculture is both a contributor to and a recipient of the effects of a changing climate (Rosen Zweig, 2003; National Assessment Synthesis Team, 2001).
The use of earth observations by the agricultural sector has a long history. The Large Area Crop
Inventory Experiment (LACIE), jointly sponsored by the US National Aeronautics and Space
Administration (NASA), the US Department of Agriculture (USDA), and the National Oceanic and
Atmospheric Administration (NOAA) during 1974 to 1978 demonstrated the potential for satellite
observations to make accurate, extensive, and repeated surveys for global crop forecasts. LACIE used
observations from the Landsat series of multi-spectral scanners on sun-synchronous satellites. The
Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing (AgRISTARS) followed
LACIE and extended the use of satellite observations to include early warning of production changes,
inventory and assessment of renewable resources, and other activities (Congressional Research Service,

The Production Estimates and Crop Assessment Division (PECAD) of the USDA’s Foreign
Agricultural Service (FAS) have continued to expand and enhance the use of earth observation data.
PECAD is now the world’s most extensive and longest running (over two decades) operational user of
remote sensing for evaluation of worldwide agricultural productivity (National Aeronautics and Space
Administration, 2001). This chapter highlights the experience of PECAD to illustrate uses and limitations
of observations in decision support for the agriculture sector.

2. Description of PECAD

The USDA/FAS uses PECAD to analyze global agricultural production and crop condition
affecting planting, harvesting, marketing, commodity export and pricing, drought monitoring, and food
assistance. Access to and uses of PECAD are largely by the federal government, rather than state and local
governments, as a means of assessing regions of interest in global agricultural production.

PECAD uses satellite data, world wide weather data, and agricultural models in conjunction with
FAS overseas post reports, foreign government official reports, and agency travel observations to support
decision making. FAS also works closely with the USDA Farm Service Agency and the Risk Management
Agency to provide early warning and critical analysis of major crop events in the United States. (FAS

1 PECAD is the name for both the decision support system (DSS) and the FAS Division within which the
DSS resides (Kaupp and coauthors, 2005)
seeks to promote the security and stability of U.S. food supply, improve foreign market access for U.S.
agricultural products, provide reports on world food security, and advise the U.S. government on
international food aid requirements. FAS bears the primary responsibility for USDA’s overseas activities:
market development, international trade agreements and negotiations, and the collection and analysis of
statistics and market information. FAS also administers USDA’s export credit guarantee and food aid
programs.

PECAD’s Crop Condition Data Retrieval and Evaluation (CADRE) database management system,
the operational outcome of the LACIE and AgRISTARs projects, was one of the first geographic
information systems (GIS) designed specifically for global agricultural monitoring (Reynolds, 2001).
CADRE is used to maintain a large satellite imagery archive to permit comparative interpretation of
incoming imagery with that of past weeks or years. The database contains multi-source weather data and
other environmental data that are incorporated as inputs for models to estimate parameters such as soil
moisture, crop stage, and yield. These models also indicate the presence and severity of plant stress or
injury. The information from these technologies is used by PECAD to produce in conjunction with the
World Agricultural Outlook Board official USDA foreign crop production estimates. (FAS OnLine Crop

Figure 1 (Kaupp and coauthors, 2005, p. 5) illustrates the global data sources and decision support
tools for PECAD. The left-hand portion of the figure shows sources of data for the CADRE geospatial
DBMS. These inputs include station data from the World Meteorological Organization and coarse
resolution data from Meteosat, SSMR, and GOES. Meteosat, operated by the European Organization for
the Exploitation of Meteorological Satellites (EUTMETSAT), provides visible and infrared, weather-
oriented imaging. The Scanning Multichannel Microwave Radiometer (SSMR) and its successor, the
Special Sensor Microwave/Imager (SSM/I), are microwave radiometric instruments in the US Air Force
Defense Meteorological Satellite Program. Additional weather data come from the US Geostationary
Satellite (GOES) program.

Medium resolution satellite data include AVHRR/NOAA, Spot-Vegetation, and Terra/Aqua
MODIS. AVHRR/NOAA, the Advanced Very High Resolution Radiometer operated by NOAA, provides
cloud cover and land, water, and sea surface temperatures at approximately 1-km spatial resolution. The
Systeme Pour L’Observation de la Terre (SPOT) supplies commercial optical Earth imagery at resolutions from 2.5 to 20 meters; SPOT-Vegetation is a sensor providing daily coverage at 1 km resolution. The NASA Moderate Resolution Imaging Spectroradiometers (MODIS) on the Terra and Aqua satellites, part of the US Earth Observation System, show rapid biological and meteorological changes at 250 to 1000 m spatial resolution every two days. NASA’s Global Inventory Modeling and Mapping Studies group (NASA/GIMMS) processes data acquired from SPOT and Terra/Aqua MODIS. NASA/GIMMS provides PECAD with cross-calibrated global time series of Normalized Difference Vegetation Index maps from AVHRR and SPOT-Vegetation. Moderate-resolution earth observation data are also used from the US Landsat program.

Sources of high resolution and radar altimeter satellite data include SPOT, IKONOS, Poseidon, and Jason. IKONOS is a commercial earth imaging satellite providing spatial resolution of 1 and 4 meters. Data from Poseidon and its successor, Jason, provide lake and reservoir surface elevation estimates. Poseidon, part of the TOPEX/Poseidon mission, and Jason-1, a follow-on mission, are joint ventures between NASA and the Centre National d’Etudes Spatiales (CNES) using radar altimeters to map ocean surface topography (including sea surface height, wave height, and wind speed above the ocean). These data enable analysts to assess drought or high water-level conditions within some of the world’s largest lakes and reservoirs to predict effects on downstream irrigation potential and inform production capacity estimates (Birkett and Doorn, 2004; Kanarek, 2005). The assimilation of these data into PECAD is described in detail in a recent systems engineering report (National Aeronautics and Space Administration, 2004b).

PECAD combines the satellite and climate data, crop models (along the bottom portion of the figure), a variety of GIS tools, and a large amount of contextual information including official government reports, trade and new sources, and on-the-ground reports from a global network of embassy attaches and regional analysts. The integration and analysis is attained by “convergence of evidence analysis” (Kaupp and coauthors, 2005). This convergence methodology seeks to reconcile various independent data sources to achieve a level of agreement to minimize estimate error (National Aeronautics and Space Administration, 2004a).
The crop assessment products indicated along the right-hand side of the PECAD architecture in figure 1 represent the periodic global estimates used to inform official USDA forecasts. These products are provided to the agricultural market, including farmers, agribusiness, commodity traders and researchers, and federal, state, and local agencies. In addition to CADRE, other automated components include two features providing additional types of information. The FAS Crop Explorer (middle of diagram) is a feature on the FAS website since 2002 (Kanarek, 2005). Crop Explorer offers near-real-time global crop condition information based on satellite imagery and weather data from the CADRE database and NASA/GIMMS. Thematic maps of major crop growing regions show vegetation health, precipitation, temperature, and soil moisture. Time-series charts show growing season data for agro-meteorological zones. For major agriculture regions, Crop Explorer provides crop calendars and crop areas. Through Archive Explorer, PECAD provides access to an archive of moderate to high-resolution data, allowing USDA users (access is controlled by user name and password) to search an image database.

3. Potential Future Use and Limits

The most recent enhancements to PECAD/CADRE have included the integration and evaluation of MODIS, Topex/Poseidon, and Jason-1 products (National Aeronautics and Space Administration, 2006a). Figure 2 summarizes the earth system models, earth observations data and the CADRE DBMS and characterizes their outputs. Several planned earth observations missions anticipated when this image was prepared (indicated in italics) show how PECAD/CADRE could incorporate new opportunities, including those with additional land, atmosphere, and ocean observations. These would include space-based observations of atmospheric carbon dioxide (CO$_2$) from the Orbiting Carbon Observatory (OCO) and measurement of global sea surface salinity (Aquarius) to improve understanding of the links between the water cycle, climate, and the ocean. Other opportunities for enhancing PECAD/CADRE could include improvements in predictive modeling capabilities in weather and climate. (National Aeronautics and Space Administration, 2006a).

In a recent evaluation report for PECAD, NASA has acknowledged that one of the largest technology gaps in meeting PECAD requirements is the design of NASA systems for research purposes rather than for operational uses (National Aeronautics and Space Administration, 2004a). PECAD analysts
require dependable inputs, implying use of operational systems that ensure continuous data streams and that
minimize vulnerability to component failure through redundancy. The report also emphasizes that PECAD
requires systems that deliver real-time or near-real-time data. Many NASA missions have traded timeliness
for experimental research or improvements in other properties of the information delivered. Additionally,
the report identifies several potential earth science data streams that have not yet been addressed, including
water balance, the radiation budget (including solar and long wave radiation flux), and elevation, and
expresses concern about the potential continuity gap between Landsat 7 and the Landsat Data Continuity
Mission.

A 2006 workshop convened at the United Nations Food and Agriculture Organization (FAO) by
the Integrated Global Observations of Land (IGOL) team identified priorities for agricultural monitoring
during the next 5 – 10 years as part of the emerging Global Earth Observing System of Systems (GEOSS).
In summary, the meeting called for several initiatives including (United Nations Food and Agriculture
Organization, 2006):

(1) the need for an international initiative to fill the data gap created by the malfunction of Landsat 7;
(2) a system to collect cloud-free, high resolution (10-20 m) visible, near-infrared, and short-wave
infrared observations at 5 – 10 day intervals;
(3) workshops on global agricultural data coordination and on integrating satellite and in situ observations;
(4) an inventory and evaluation of existing agro meteorological data sets to identify gaps in terrestrial
networks, the availability of data, and validation and quality control in order to offer specific
recommendations to the World Meteorological Organization to improve its database;
(5) funding to support digitizing, archiving, and dissemination of baseline data; and
(6) an international workshop within the GEOSS framework to develop a strategy for “community of
practice” for improved global agricultural monitoring.

A recent study by the National Research Council (NRC) of the use of land remote sensing
expressed additional concerns about present limits on the usefulness of earth observations in agricultural
assessment) (National Research Council, 2007). These include data integration, communication of results,
and capacity to use and interpret data. Specifically, the NRC identified these concerns:
(1) Inadequate integration of spatial data with socioeconomic data (locations and vulnerabilities of human populations, access to infrastructure) to provide information that is effective in generating response strategies to disasters or other factors influencing access to food or impairing agricultural productivity;

(2) A lack of communication between remote sensing mission planners, scientists and decision makers to ascertain what types of information enable the most effective food resource management; and

(3) Shortcomings in the acquisition, archiving, and access to long-term environmental data and development of capacity to interpret these data, including maintaining continuity of satellite coverage over extended time frames, providing access to affordable data, and improving capacity to interpret data.

4. Uncertainty

Two aspects of PECAD provide means of validation and verification of crop assessments. One is the maturity of PECAD as a decision support system. Over the years, it has been able to benchmark, validate, verify and then selectively incorporate additional data sources and automated decision tools. An example of the systems engineering review associated with a decision to incorporate Poseidon and Jason data, for example, is offered in a detailed NASA study (NASA, 2004b).

Another example demonstrates how data product accuracy, delivery, and coverage are tested through verification and validation during the process of assimilating new data sources, as well as to ascertain the extent to which different data sources corroborate model outputs (Kaupp and coauthors, 2005). Essential considerations included enhanced repeatability of results, increased accuracy, and increased throughput speed.

Another significant aspect of resolving uncertainty in PECAD is its extensive use of a convergence methodology to assimilate information from regional field analysts and other experts. PECAD seeks to provide accurate and timely estimates of production, yet must accommodate physical and biological influences (weather, pests), the fluctuations in agricultural markets, and developments in public policy impacting the agricultural sector (Kaupp and coauthors, 2005). The methodology brings a large amount of additional information to the PECAD forecasts, well beyond the automated outputs of the decision support tools. This extensive additional analysis may not fully correct for, but certainly mitigates
the uncertainty inherent in the data and modeling at the early stages. Figure 3, a simplified version of figure 1, shows the step represented by the analyses that take place during this convergence of information in relation to the outputs obtained from the decision support tools and their data inputs. Figure 4 further describes the nature of information included in the convergence methodology in addition to the outputs of the data and automated decision support tools. Official reports, news reports, field travel, and attaché reports are additional inputs at this stage. The process is described as one in which, “while individual analysts reach their conclusions in different ways, giving different weight to various inputs, analysts join experts from the USDA’s Economic Research Service and National Agricultural Statistics Service once a month in a ‘lock-up.’ In this setting, the convergence of evidence approach is fully realized as analysts join together in committee formed by (agricultural) commodity. Final commodity production estimates are achieved by committee consensus” (National Aeronautics and Space Administration, 2004a, p. 4).

The convergence methodology is at the heart of analysis and the final step prior to official world agricultural production estimates, and suggests that uncertainty inherent in data and automated models at earlier stages of the analysis are “scrubbed” in a broader context at this final stage.

5. Global change information and PECAD

The relationship between climate and agriculture is complex. Agriculture is not only influenced by a changing climate, but agricultural practices themselves are a contributory factor through emissions of greenhouse gases and influences on fluxes of carbon through photosynthesis and respiration. In short, agriculture is both a contributor to and a recipient of the effects of a changing climate (Rosenzweig, 2003).

At present, PECAD is not directly used to address these dimensions of the climate-agriculture interaction. However, many of the data inputs for PECAD are climate-related, thereby enabling PECAD to inform understanding of agriculture as a “recipient” of climate-induced changes in temperature, precipitation, soil moisture and other variables. In addition, spatial and geographic trends in the output measures from PECAD have the potential to contribute to understanding of how the agricultural sector is responding to a changing climate.

The output measures of PECAD also can serve to inform understanding of agriculture as a “contributor” to climate changes. For example, observing trends in PECAD’s measures of production and
composition of crops can shed light on the contribution of the agriculture sector to agricultural soil carbon sequestration.

The effects of a changing climate on agricultural efficiency as measured by PECAD:

PECAD relies on several data sources for agro meteorological phenomena that affect crop production and the quality of agricultural commodities. These include data that are influenced by climate (precipitation, temperatures, snow depth, soil moisture). The productivity measures from PECAD (yield multiplied by area) are also influenced by climate-induced changes in these data.

In addition, the productivity measures of PECAD can be indirectly but significantly affected by possible climate-induced changes in land use. Examples of such changes include the reallocation of land from food production to biomass fuel production or from food production to forestry cultivation as a means of carbon sequestration. In all of these cases, earth observations can contribute to understanding climate-related effects on agricultural efficiency (National Research Council, 2007). Much of the research to integrate earth observations into climate and agriculture decision support tools is relatively recent; for example, in FY05, NASA and USDA began climate simulations using GISS GCM ocean temperature data and also completed fieldwork for verification and validation of a climate-based crop yield model (see National Aeronautics and Space Administration, 2006b). The UN FAO has begun to coordinate similar research on integrating earth observations, decision support systems to study possible effects of changing climate on food production and distribution (for example, see United Nations Food and Agriculture Organization, no date).

The effects of agricultural practices and efficiency on climate:

In addition to consideration of the effects of climate on agriculture, the feedback from agricultural practices to climate has also been a topic of study (for example, see http://www.fao.org/NESS/1997/971201-e.htm accessed April 2007). The crop assessments and estimates from PECAD, by revealing changes in agricultural practices, could play a role as early indicators to inform forecasting future agricultural-induced effects on climate. The Agricultural Research Service within USDA and NASA have undertaken research using earth observation data to study scale-dependent earth – atmosphere interactions, suggesting that
significant changes in regional land use or agricultural practices could affect local and regional climate (National Aeronautics and Space Administration, 2001).
Figure 2. The PECAD Decision Support System: Earth System Models, Earth Observations, Decision Support Tools, and Outputs (Source: National Aeronautics and Space Administration, 2006a, p. 32).
Figure 3: The PECAD Decision Support System: The Role of Convergence of Evidence Analysis (Source: National Aeronautics and Space Administration, 2004a, p. 8).
Figure 4: The PECAD Decision Support System: Information Sources for the Convergence of Evidence Analysis (Source: National Aeronautics and Space Administration, 2004a, p. 5).

From: http://www.fas.usda.gov/pecad/remote/overview/frame_OV.htm
Chapter 2

Decision Support for Air Quality

Lead Author: Daewon W. Byun

1. Introduction

Our ability to understand and forecast the quality of the air we breathe, as well as our ability to understand the science of chemical and physical atmospheric interactions, is at the heart of models of air quality. Air quality is affected by and has implications for the topics in our other chapters: air quality is affected by energy management and agricultural practices, for instance, and is a major factor in public health. Models of air quality also provide a means of evaluating the effectiveness of air pollution and emission control policies and regulations.

While numerous studies examine the potential impact of climate change on forests and vegetation, agriculture, water resources and human health (e.g., Brown et al., 2004; Mearns, 2003; Leung and Wigmosta 1999; Kalkstein and Valimont 1987), attempts to project the response of air quality to changes in global and regional climate have long been hampered by the absence of proper tools that can transcend the different spatial and temporal scales involved in climate predictions and air quality assessment and by the uncertainties in climate change predictions and associated air quality changes.

Air quality is affected by meteorological processes and by changes in the meteorological processes associated with climate change processes at scales that are much smaller than those resolved by global climate models (GCMs), which are typically applied at a resolution of several hundred kilometers. Air quality is most affected by meteorological processes at regional and local scales. Current-day regional climate simulations, which typically employ a horizontal resolution of 30 - 60 km, are insufficient to resolve small-scale processes that are important for regional air quality, such as low-level jets, land-sea breezes, local wind shears, and urban heat island effects. In addition, climate simulations place enormous demands on computer storage. As a result, most climate simulations only archive a limited set of

6/15/2007
meteorological variables, the time interval for the archive is usually 6-24 hours, and some critical
information required for air quality modeling is missing.

Another issue is the interaction and feedback between climate and air chemistry. Climate and air
quality are linked through atmospheric chemical, radiative, and dynamic processes at multiple scales. For
instance, aerosols in the atmosphere may modify atmospheric energy fluxes by attenuating, scattering, and
absorbing solar and infrared radiation, and may also modify cloud formation by altering the growth and
droplet size distribution in the clouds. The changes in energy fluxes and cloud fields may, in turn, alter the
concentration and distribution of aerosols and other chemical species. Although a few attempts have been
made to address the issues, our understanding of climate change is based largely on modeling studies that
have neglected these feedback mechanisms.

Also of concern is the impact of climate change on air emissions. Changes in temperature,
precipitation, soil moisture patterns, and clouds due associated with global warming may directly alter
emissions such as biogenic emissions (e.g., isoprene and terpenes). Isoprene, an important natural precursor
of ozone, is emitted mainly by deciduous tree species. Emission rates are dependent on the availability of
solar radiation in visual range and are highly temperature sensitive. Emissions of terpenes (semi-volatile
organic species) may induce formation of secondary organic aerosols. The accompanying changes in the
soil moisture, atmospheric stability, and flow patterns complicate these effects and it is difficult to predict if
climatic change will eventually lead to increased levels of surface ozone and aerosol concentrations or not.

This chapter discusses the U.S. Environmental Protection Agency’s Community Multiscale Air
Quality (CMAQ) modeling system. CMAQ has as its primary objectives to (1) improve the ability of
environmental managers in evaluating the impact of air quality management practices for multiple
pollutants at multiple scales, and (2) enhance scientific ability to understand and model chemical and
physical atmospheric interactions (http://www.epa.gov/asmdner/CMAQ/ (accessed May 2007). It is also
used to guide the development of air quality regulations and standards and to create state implementation
plans. Various observations from the ground, in situ and satellite platforms are used in CMAQ almost at
every step of the decision support system (DSS) processing.
2. Description of CMAQ

The U.S. EPA CMAQ modeling system (Byun and Ching, 1999; Byun and Schere, 2006) has the capability to evaluate relationships between emitted precursor species and ozone at urban/regional scales (Appendix W to Part 51 of 40CFR: Guideline on Air Quality Models). CMAQ uses state-of-the-science techniques for simulating all atmospheric and land processes that affect the transport, transformation, and deposition of atmospheric pollutants. The primary modeling components in the CMAQ modeling system include: (1) a meteorological modeling system (e.g., MM5) or a regional climate model (RCM) for the description of atmospheric states and motions; (2) inventories of man-made and natural emissions of precursors that are injected into the atmosphere; and (3) the CMAQ Chemistry Transport Modeling (CTM) system for the simulation of the chemical transformation and fate of the emissions. The model can operate on a large range of time scales from minutes to days to weeks as well as on numerous spatial (geographic) scales ranging from local to regional to continental.

The base CMAQ system is maintained by the U.S. EPA. The Center for Environmental Modeling for Policy Development (CEMPD), University of North Carolina at Chapel Hill (UNC), is contracted to establish a Community Modeling and Analysis System (CMAS) (http://www.cmascenter.org/) for supporting community-based air quality modeling. CMAS helps development, application, and analysis of environmental models and helps distribution of the DSS and related tools to the global modeling community. Table 1 lists Earth observations (of all types—remote sensing and in situ) presently used in the CMAQ DSS.

Within this overall DSS structure as shown in Table 1, CMAQ is an emission-based, three-dimensional (3-D) air quality model that does not utilize daily observational data directly for the model simulations. The base databases utilized in the system represent typical surface conditions and demographic distributions (e.g., land use and land cover as well as the demographic and socioeconomic information in the BELD3 database). At present the initial conditions are not specified using observed data even for those species routinely measured as part of the controlled criteria species listed in the National Clean Air Act and its Amendments (CAA) in an urban area using a dense measurement network. This is because of the difficulty in specifying the multi-species conditions that satisfy chemical balance in the system, which is...
subject to the diurnal evolution of radiative conditions and of the atmospheric boundary layer as well as
temporal changes in the emissions that reflect constantly changing human activities.

The main output of the CMAQ and its DSS is the concentrations and deposition amount of
atmospheric trace gases and particulates at the grid resolution of the model, usually at 36-km for CONUS
(continental) domain, and 12-km or 4-km for regional or urban scale domains. The end users of the DSS
want information on the major scientific uncertainties and our ability to resolve them subject to the
information on socioeconomic context and impacts. They seek information on the implications at the
national, regional, and local scales and on the baseline and future air quality conditions subject to climate
change to assess the effectiveness of current and planned environmental policies. Local air quality
managers would want to know if the DSS could help assess methods of attaining current and future ambient
air quality standards and evaluate opportunities to mitigate the climate change impacts. Through sensitivity
simulations of the DSS with different assumptions on the meteorological and emissions inputs, the
effectiveness of such policies and uncertainties in the system can be studied.

3. Potential Future Uses and Limits

One of the major strengths of CMAQ is its reliance on the first principles of physics and chemistry.
The present limitations in science parameterizations and modeling difficulties will continuously be
improved as new understanding of these phenomena are obtained through various measurements and model
evaluation/verification. A case in point is the development of the chemical mechanism, Carbon Bond 05
(CB05), which recently replaced CB-4. The quality of emission inputs for the system, both at the global
and regional scales, depends heavily on socio-economic conditions and such estimates are obtained using
projection models in relevant socio-economic disciplinary areas. The CMAQ DSS user/operators may not
always have domain expertise to discern the validity of such results.

CMAQ needs to have the ability to utilize available observations to specify more accurately critical
model inputs, which are arbitrarily defined at present. A data assimilation approach is one approach that
may be used to improve the system performance at different processing steps. For example, research has
been undertaken to use satellite remote sensing data products together with high-resolution land use and
land cover (LULC) data to.
Table 1. Input data used for operating the CMAQ-based DSS.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Type of Information</th>
<th>Source</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Climate Model Output</td>
<td>Simulation results from a regional climate model (RCM) used as a driver for CMAQ modeling. It is processed through MCIP (meteorology-chemistry interface processor)</td>
<td>RCM modeling team. PNNL, UIUC, NCEP, EPA, Universities</td>
<td>Regional climate characterization, Driver data for air quality simulations, emissions processing</td>
</tr>
<tr>
<td>Land Use Land Cover, Subsoil category, &amp; Topography Data, topography for meteorological modeling</td>
<td>Describes land surface conditions and vegetation distribution for surface exchange processes.</td>
<td>Various sources from USGS, NASA, NCEP EPA, states, etc.</td>
<td>Usually the data is associated with RCM’s land surface module. Need to be consistent with vegetation information such as BELD3 if possible.</td>
</tr>
<tr>
<td>Biogenic Emissions Land Use Database version 3 (BELD3)</td>
<td>Land use and biomass data, vegetation/tree species fractions;</td>
<td>EPA</td>
<td>Processing of biogenic emissions; Used to provide activity data for county-based emission estimates; Now also used for Land surface modeling in RCM</td>
</tr>
<tr>
<td>Air Emissions Inventories: National Emissions</td>
<td>Amount and type of pollutants into the atmosphere. Includes: Chemical or physical identity of pollutants</td>
<td>EPA, Regional Program Organizations (RPOs), states, and</td>
<td>Preparation of model-ready emission inputs. Perform speciation for the chemical mechanism used.</td>
</tr>
</tbody>
</table>
Inventories (NEI) and state/special inventories. Often called as “bottom-up” inventories. Often called as “bottom-up” inventories.

**Chemical Species**

<table>
<thead>
<tr>
<th>Initial and Boundary Conditions</th>
<th>Clean species concentration profiles initial input and boundary conditions used for CMAQ simulations; originally from observations from clean background locations</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>EPA (fixed profiles), GEOS-Chem (Harvard &amp; Univ. Houston), Mozart (NCAR); dynamic concentrations with diurnal variations (daily, monthly or seasonal)</strong></td>
<td><strong>Used to evaluate “top-down” emissions (i.e., from inversion of satellite observations through air chemistry models)</strong></td>
</tr>
</tbody>
</table>

**AQS/AIRNow**

<table>
<thead>
<tr>
<th>Near real-time (AIRNow) and archived datasets (AQS) for ozone, PM, and some toxics species</th>
<th>Joint partnership between EPA &amp; state and local air quality agencies</th>
<th>Measurement data used for model evaluations. Report and communicate national air quality conditions for</th>
</tr>
</thead>
</table>

925 improve the land-surface parameterizations and boundary layer schemes in the RCMs (e.g., Pour-Biazar, et al., 2007). Active research in chemical data assimilation is currently conducted with the GEOS-Chem modeling program, which utilizes both in situ and satellite observations (e.g., Kopacz, et al, 2007; Fu et al., 2007). Because of the coarse spatial and temporal resolutions of the satellite data collected in the 1960s through the 1980s, most of research in this area has been performed with global chemistry-transport models. As the horizontal footprint of modern satellite instruments reaches the resolution suitable for regional air quality modeling, these data can be used to evaluate and then improve the bottom-up emissions inputs in the regional air quality models. However, they still do not provide required detailed vertical
information except from the solar occultation instruments, but with very limited spatial coverage. However, additional in situ and remote sensing measurements from ground and aircraft platforms could be used to augment the satellite data in these data assimilation experiments.

Utilization of the column-integrated satellite measurements in a high-resolution 3-D grid model like CMAQ poses serious challenges to distribute the pollutant vertically, separating those within and above the atmospheric boundary layer. Because similar problems exist for the retrieval of meteorological profiles of moisture and temperature, these experiences can be adapted for a few well-behaved chemical species. The same tool can be used to improve the initial and boundary conditions with various in situ and satellite measurements of atmospheric constituents. At present, however, an operational assimilation system for CMAQ is not yet available although prototype assimilation codes have just been generated (Hakami, et al., 2007; Zhang et al., 2007). Should these data assimilation tools become part of the DSS, various conventional and new satellite products, such as from AURA/Tropospheric Emission Spectrometer (TES) ozone profiles, GOES hourly total ozone column (GhTOC) data, OMI TOC, CALIPSO attenuated backscatter profiles, and OMI AOT data can be utilized to improve the urban-to-regional scale air quality predictions.

Because of the critical role of the RCM as the driver of CMAQ in climate change studies, the results of RCM for the long-term simulations must be verified thoroughly. Until now, for the air quality related operations, evaluation of the RCM has been performed only for relatively short simulation periods. For example, the simulated surface temperature, pressure, and wind speed must be compared to surface observations to determine how well the model captures the mean land-ocean temperature and pressure gradients, the mean sea breeze wind speeds, the average inland penetration of sea-breeze, the urban heat island effect, and the seasonal variations of these features. Comparisons with rawinsonde soundings and atmospheric profiler data would determine how well the model reproduces the averaged characteristics of the afternoon mixed layer heights and of the early morning temperature inversion, as well as the speed and the vertical wind shears of the low-level jets. In addition to these mesoscale phenomena, changes in other factors can also alter the air pollution patterns in the future and need to be carefully examined. These factors include the diurnal maximum, minimum, and mean temperature; cloud cover; thunderstorm
As demonstrated in the global model applications, satellite measured biomass burning emissions data should be utilized in the regional air quality modeling (e.g., Duncan et al. 2003; Hoelzemann, et al., 2004). Duncan et al. (2003) presented a methodology for estimating the seasonal and interannual variation of biomass burning, designed for use in global chemical transport models using fire-count data from the Along Track Scanning Radiometer (ATSR) and the Advanced Very High Resolution Radiometer (AVHRR) World Fire Atlases. The Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) data product was used as a surrogate to estimate interannual variability in biomass burning. Also Sprakclen et al. (2007) showed that wildfires contribution to the interannual variability of organic carbon aerosol can be studied using the area burned data and ecosystem specific fuel loading data. A similar fire emissions data set at the regional scales could be developed for use in the climate impact on air quality study. For retrospective application, a method similar to that used by the NOAA’s Hazard Mapping System (HMS) for Fire and Smoke [http://www.ssd.noaa.gov/PS/FIRE/hms.html](http://www.ssd.noaa.gov/PS/FIRE/hms.html) may be used to produce a long-term regional scale fire emissions inventories for climate impact analysis.

4. Uncertainty

The CMAQ modeling system as currently operated has several sources of uncertainty in addition to those associated with some of the limits of CMAQ as described in the previous section. In particular, when CMAQ is used to study of the effects of climate change and air quality, improvements in several areas are necessary to reduce uncertainty in the CMAQ modeling system. First, the regional air quality models employ limited modeling domains and as, such they are ignorant of the air pollution events outside the domains unless proper dynamic boundary conditions are provided. Second, because the pollutant transport and chemical reactions are vastly affected by the meteorological conditions, improving both the global climate and regional climate models and the downscaling methods by evaluating/verifying physical algorithms implemented with observations must be accomplished to improve the systems overall performance. Third, the basic model inputs, such as land use/vegetation cover descriptions and emissions inputs in the system must be improved. Fourth, but not the least, the issue of incommensurability of
modeling the nature, as well as the grid resolution problems, as suggested by Russell and Dennis (2000).

needs to be addressed. These factors are the principal cause of simulation/prediction errors.

Although the models incorporated in the DSS are first-principle based environmental models, they have difficulties in representing forcing terms in the system, in particular the influence of the earth’s surface, long-range transport, and uncertainties in the model inputs such as daily emissions changes due to anthropogenic and natural events. There is ample opportunity to reduce uncertainties associated with CMAQ through model evaluation/verification using current and future meteorological and atmospheric chemistry observations. Satellite data products assimilated in the GCTM could provide better dynamic lateral boundary conditions for CMAQ. Additional opportunities to reduce the model uncertainty include: comparison of model results with observed data at different resolutions, quantification of effects of initial and boundary conditions and chemical mechanisms; application of CMAQ to estimate the uncertainty of input emissions data; and ensemble modeling (using a large pool of simulations among a variety of models) as a means to estimate model uncertainty.

A limitation in CMAQ applications, and therefore a source of uncertainty, has been the establishment of initial conditions. The default initial conditions and lateral boundary conditions in CMAQ are provided under the assumption that after spin-up of the model, they no longer play a role, and in time, surface emissions govern the air quality found in the lower troposphere. Song et al. (2007) showed that the effects of the lateral boundary condition differ for different latitude and altitude, as well as season, for a long-term simulation. In the future, dynamic boundary conditions can be provided by fully integrating the GCTMs as part of the system. Several research groups are actively working on this, but the simulation results are not yet available in the open literature. Also, a scientific cooperative forum the Task Force on Hemispheric Transport of Air Pollution (http://www.htap.org/index.htm) endeavors to bring together the national and international research efforts at the regional, hemispheric, and global scales to develop a better understanding of air pollution transport in the Northern Hemisphere. The task force is currently preparing the 2007 Interim Report addressing various long-range transport of air pollutant issues (http://www.htap.org/activities/2007_Interim_Report.htm). Although the effort is not directly addressing the climate change issues, many of findings and tools used are very much relevant to the meteorological and chemical downscaling issues.
Ultimately, application of CMAQ should consider all the uncertainties in the inputs. The system’s response may be directly related to the model configuration and algorithms (structures, resolutions and chemical and transport algorithms), compensating errors, and the incommensurability of modeling nature, as suggested by Russell and Dennis (2000).

5. Global Change Information and CMAQ

CMAQ could be used to help answer several questions about the relationship between air quality and climate change:

1) How will global warming affect air quality in a region?

2) How will land use change due to climate, urbanization, or intentional management decisions affect air quality?

3) How much will climate change alter the frequency, seasonal distribution, and intensity of synoptic patterns that influence pollution in a region?

4) How sensitive are the air quality simulations to uncertainty in wild fire projections and to potential land management scenarios?

5) How might the contribution of the local production and long-range transport of pollutants differ due to different climate change scenarios?

6) Will future emissions scenarios or climate changes affect the frequency and magnitude of high pollution events?

To provide answers to these questions, CMAQ will rely heavily on climate-change-related information. In addition to the influence of greenhouse gases and global warming, other forcing functions include population growth and land use changes. Different scenarios can be chosen either to study potential impacts or to estimate the range of uncertainties of the predictions. The two upstream climate models, GCMs and RCMs, generate the climate change data that drive a GCTM and CMAQ. Both the GCMs and RCMs are expected to represent future climate change conditions while simulating historic
climate conditions that can be verified with comprehensive reanalysis datasets. The meteorology simulated
by the climate models represents that in a typical future year scenario, reflecting the changing atmospheric
conditions. Furthermore, emissions inputs used for the GCTM and CMAQ must reflect the natural changes
and/or anthropogenic developments related to climate change.

In recent years, the EPA Science to Achieve Results (STAR) program has funded several projects on
the possible effects of climate change on air quality and on ecosystems. Many of these projects have
adopted CMAQ as the base tool for the study. Figure 1 provides a general schematic of the potential
structure of a CMAQ-based climate change decision support system (DSS). The figure show potential uses
of CMAQ for climate study; most climate-related CMAQ applications are not yet configured as fully as
indicated in the figure.

The projects linking CMAQ and climate study have used upstream models and downstream tools such
as those identified in Table 2. Related projects that use regional air quality models other than CMAQ are
also listed as reference information. For the GCMs, NCAR’s CCM (Kiehl et al., 1996), NASA’s GISS
(e.g., Hansen et al., 1997; 2005), and NOAA GFDL’s CM2 (Delworth et al., 2006) are most popular global
models for providing meteorological inputs representing climate change events. A recent description for the
GISS model can be found, for example, in Schmidt et al. (2006) (http://www.giss.nasa.gov/tools/) and for
the CCM in Kiehl et al. (1996) and from the webpage http://www.cgd.ucar.edu/cms/ccm3/. A newer
version of the CCM was released on May/17/2002 with a new name -- the Community Atmosphere Model
(CAM). The CAM web page is available from: http://www.ccsm.ucar.edu/models/atm-cam and the model
are described in Hurrell et al. (2006).

Table 2. Potential Uses: modeling components and upstream and downstream tools for a CMAQ-based
Climate Change Impact Decision Support System.

<table>
<thead>
<tr>
<th>Component</th>
<th>Functions</th>
<th>Owner</th>
<th>Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Climate Models (GCMs)</td>
<td>Performs climate change simulations over the globe for different SRES climate</td>
<td>CCM (Community Climate Model): NCAR</td>
<td>Climate research institutes, Universities, Government</td>
</tr>
<tr>
<td>Global Chemistry Transport Models (GCTMs)</td>
<td>Computes global scale chemical states in the atmosphere. Uses same resolution as GCM.</td>
<td>GISS (Goddard Institute for Space Studies) GCM: NASA&lt;br&gt;CM2: Geophysical Fluid Dynamics Laboratory (GFDL) of NOAA&lt;br&gt;GEOS-Chem: NASA, Harvard University&lt;br&gt;Mozart: NCAR (ESSL/ACD)</td>
<td>institutions&lt;br&gt;Global chemistry research organizations, Universities, Government institutions</td>
</tr>
<tr>
<td>Regional Climate Models (RCMs)</td>
<td>Simulates regional scale climate and meteorological conditions downscaling the GCM output. For US application ~36 km resolution used</td>
<td>MM5-based: NCAR, PNNL, UIUC, others&lt;br&gt;WRF-based: NCAR, UIUC&lt;br&gt;Eta-based: NCEP&lt;br&gt;Regional climate research groups, Universities, Government institutions</td>
<td></td>
</tr>
<tr>
<td>Regional Air Quality Models (AQMs)</td>
<td>Performs air quality simulations at regional and urban scales at the same resolution as the RCM</td>
<td>CMAQ (Community Multiscale Air Quality): EPA&lt;br&gt;Camx (Comprehensive Air quality Model with Extensions): Environ&lt;br&gt;WRF-Chem: NOAA/NCAR&lt;br&gt;STEM-II: University of Iowa</td>
<td>Regional, State, and local air quality organizations, Universities, Private industries Consulting companies</td>
</tr>
<tr>
<td>Downstream tools for decision</td>
<td>Performs additional computations to help</td>
<td>CMAQ/DDM: GIT&lt;br&gt;CMAQ/4Dvar: CalTech/VT/UH</td>
<td>Universities, Consulting companies</td>
</tr>
</tbody>
</table>
As shown in Table 2, for climate change studies, CMAQ is linked with upstream models such as a global climate model (GCM), a global tropospheric chemistry model (GTCM), and a regional climate model (RCM) to provide emissions sensitivity analysis, source-apportionment, and data assimilation to assist policy and management decision making activities including health impact analysis. One of the EPA STAR projects (Hogrefe, 2004, 2005; Knowlton, 2004; Civerolo, 2007) utilized the CMAQ-based DSS to assess if the climate change would affect the effectiveness of current and future air pollution policy decisions subject to the potential changes change in local and regional meteorological conditions. In other EPA STAR projects (Tagaris, 2007; Liao, 2007a,b), global climate change information from the simulation results of GCM with the well-mixed greenhouse gas concentrations – CO2, CH4, N2O, and halocarbons – updated yearly from observations for 1950–2000 (Hansen et al., 2002) and for 2000-2052 following the A1B SRES scenario from the Intergovernmental Panel on Climate Change (IPCC 2001), but with fixed ozone and aerosol concentrations in the radiative scheme at present-day climatological value (Mickley, et al., 2004), was employed.
To resolve the meteorological features affecting air pollution transport and transformation in a regional scale, the coarse scale meteorological data representing the climate change effects by a GCM are downscaled using a RCM. An RCM is often based on a limited-domain regional mesoscale model, such as MM5, RAMS, Eta, and WRF/ARW and WRF/NMM. An alternative method for constructing regional scale climate change data is through a statistical downscaling, which evaluates observed spatial and temporal relationships between large-scale (predictors) and local climate variables (predictands) over a specified training period and domain (Spak, et al., 2007). Because of the need to use the meteorological driver that satisfies constraints of dynamic consistency (i.e., mass and momentum conservations) for the regional scale air quality modeling (e.g., Byun, 1999 a and b), the CMAQ modeling system relies exclusively on the dynamic downscaling method.

Regional chemistry models like CMAQ are better suited for regional air quality simulations than a global Chemical Transport Model (CTM) because of the acute air pollution problems that are managed and controlled through policy decisions at specific geographic locations. Difficulty in prescribing proper boundary conditions (BCs) is one of the deficiencies of CMAQ simulations of air quality, especially in the upper troposphere (e.g., Tarasick et al., 2007; Tang et al., 2007). Therefore, one of the main roles of the global CTM is to provide proper dynamic boundary conditions for CMAQ to represent temporal variation of chemical conditions that might be affected by the long-range transport of pollution events outside the regional domain boundaries. The contemporary EPA funded projects on climate change impact on air quality mainly use two GCTM models: the NASA/Harvard’s GEOS-Chem (Bey et al., 2001) and the National Center for Atmospheric Research (NCAR) Model of Ozone and Related Chemical Tracers (MOZART) (Brasseur et al., 1998; Horowitz et al., 2003).

The GEOS-Chem model (http://www-as.harvard.edu/chemistry/trop) is a global model for predicting tropospheric composition. The model was originally driven by the assimilated meteorological observation data from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO). For climate studies, the NASA GISS GCM meteorological outputs are used instead. Emission inventories include a satellite-based inventory of fire emissions (Duncan et al., 2003) with expanded capability for daily temporal resolution (Heald et al., 2003) and the National Emissions Inventory...
for 1999 (NEI 1999) for the US with monthly updates in order to achieve adequate consistency with the
CMAQ fields at the GEOS-CHEM/CMAQ interface (Jacob, personal communication).

MOZART (http://gctm.acd.ucar.edu/mozart/models/m3/index.shtml) is built on the framework of the
Model of Atmospheric Transport and Chemistry (MATCH) that can be driven with various meteorological
inputs and at different resolutions such as meteorological reanalysis data from the National Centers for
Environmental Prediction (NCEP), NASA GMAO, and the European Centre for Medium-Range Weather
Forecasts (ECMWF). For climate change applications, meteorological inputs from the NCAR CCM3 are
used. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and
hydrocarbon chemistry, semi-Lagrangian transport scheme, dry and wet removal processes, and emissions
inputs. Emission inputs include sources from fossil fuel combustion, biofuel and biomass burning,
biogenic and soil emissions, and oceanic emissions. The surface emissions of NOX, CO, and NMHCs are
based on the inventories described in Horowitz et al. (2003), aircraft emissions based on Friedl (1997), and
lightning NOx emissions that are distributed at the location of convective clouds.

GCTMs are applied to investigate numerous tropospheric chemistry issues, including CO, CH4, OH,
NOx, HCHO, isoprene, and inorganic (sulfates and nitrates) and organic (elemental carbons, organic
carbons) particulates. As such, various in situ, aircraft, and satellite-based measurements are used to
provide the necessary inputs, to verify the science process algorithms, and to perform general model
evaluations. They include the vertical profiles from aircraft observations as compiled by Emmons et al.
(2000), multi year analysis of ozonesonde data (Logan, 1999), and those available at the Community Data
website managed by the NCAR Earth and Sun Systems Laboratory (ESSL) Atmospheric Chemistry
Division (ACD); and multiyear surface observations of CO reanalysis (Novelli et al., 2003). Current and
previous atmospheric measurement campaigns are listed in web paged by NOAA ESRL (Earth Systems
Research Laboratory), http://www.esrl.noaa.gov/; NASA, Tropospheric Integrated Chemistry Data Center;
and NCAR ESSL (Earth and Sun Systems Laboratory) Atmospheric Chemistry Division (ACD)
Community Data, http://www.acd.ucar.edu/Data/. These observations are used to set boundary conditions
for the slow reacting species, such as CH4, N2O, and CFCs and to evaluate other modeled species, such as
CO, NOx, PAN, HNO3, HCHO, acetone, H2O2, and nonmethane hydrocarbons. In addition, several
satellite measurements from the GOME, SCHIAMCHY, and OMI of CO, NO2, HCHO have been used extensively to verify the emissions inputs and performance of the GCTM.

The grid resolutions used in the studies discussed above are much coarser than those used in the air quality models for studying emission control policy issues such as evaluating state implementation plans (SIPs). SIP modeling typically utilizes over 20 vertical layers at around 4-km horizontal grid spacing to reduce uncertainties in the model predictions near the ground and around high emission source areas like urban and industrial centers. Although Civerolo et al., (2007) applied CMAQ at a higher resolution, the duration of the CMAQ simulation was too short a time scale to evaluate the regional climate impacts in detail.

One of the additional key limitations of using the CMAQ for climate change studies is that the linkages between climate and air quality and from the global scale to regional scale models are only one-way (i.e., no feedback). To represent the interactions between atmospheric chemistry and meteorology, such as radiation and cloud/precipitation microphysics, particulates and heterogeneous chemistry, a two-way linkage must be established between the meteorology and chemistry models. An on-line modeling approach like WRF-chem is an example of such linkage, but still there is a need to develop a link between the global and regional scales. A multi-resolution modeling system such as demonstrated by Jacobson (2001 a, b) might be necessary to address truly the linkage between air pollution forcing and climate change and to provide the urban-to-global connection. In addition, there are significant benefits of linking other multimedia models describing the subsoil conditions, vegetation dynamics, hydrological processes, as well as the ocean dynamics, including the physical/chemical interactions between the ocean micro-sublayer and atmospheric boundary layer. An attempt to generate such a megamodel under one computer coding structure would be impractical because of the existence of extremely different state variables in each multimedia model that require substantially different data models. Furthermore interactions among the multimedia models require multidirectional data inputs, quality assurance check-points, and the decision support entries. A more generalized on-line and two-way data exchange tools currently being developed under the Earth System Modeling Framework (ESMF) (http://www.esmf.ucar.edu/) may be a viable option.
Chapter 3

Decision Support for Assessing Hybrid Renewable Energy Systems

Lead Author: David S. Renné

1. Introduction

The national application area addressed in this chapter is the deployment of renewable energy technologies. Renewable energy technologies are being used around the world to meet local energy loads, to supplement grid-wind electricity supply, to perform mechanical work such as water pumping, to provide fuels for transportation, to provide hot water for buildings and to support heating and cooling requirements for building energy design. Numerous organizations and research institutions around the world have developed a variety of decision support tools to address how these technologies might perform in a most cost-effective manner to address specific applications. This chapter will focus on one specific decision support system (DSS), known as the Micropower Optimization Model, or Hybrid Optimization Model for Electric Renewables (HOMER), that has been under consistent development and improvement at the U.S. Department of Energy’s National Renewable Energy Laboratory, and is used extensively around the world.

Decision support tools such as HOMER rely heavily on knowledge of the renewable energy resource available to the technologies being analyzed. Renewable energy resources, particularly for solar and wind technologies, are highly dependent on weather and climate phenomena, and are also driven by local microclimatic processes. Given the absence of a sufficiently-dense ground network of reliable solar and wind observations, we must rely on validated numerical models, empirical knowledge of microscale weather characteristics, and collateral (indirect) observations derived from earth observations such as reanalysis data and satellite-borne remote sensors to develop reliable knowledge of the geospatial characteristics and extent of these resources. Thus, the DSS described in this chapter, which includes...
HOMER as an end-use application, is described in the context of the renewable energy resource information required as input, as well as some intermediate steps that can be taken to organize these data, using Geographic Information Systems software, to facilitate the application of HOMER.

2. Description of the HOMER DSS

The HOMER DSS described in this chapter consists of three main components: 1) the renewable energy resource information required to estimate technology performance and operational characteristics; 2) (optional) organization of the resource data into a Geographic Information System framework so that the data can be easily imported into the decision support tool, and 3) NREL’s Micropower Optimization Model known as HOMER, which ingests the renewable resource data for determining the optimal mix of hybrid renewable energy technologies for meeting specified load conditions at specified locations. This section describes each of these components separately. Although climate-based earth observational data are primarily relevant only to first component, some related earth observation information could also be associated with the second and even the third component. Furthermore, it will be apparent to the reader that the first component is of major importance in the successful use of the HOMER DSS.

2a. Description of the HOMER DSS

Solar and Wind Resource Assessments

The first component of the HOMER DSS is properly formatted, reliable renewable energy resource data. The significant data requirements for this component are direct measurements of wind and solar resources as well as earth observational data and numerical models to provide the necessary spatial information for these resources, which can vary significantly over relatively small distances due to local microclimatic effects. Because of the nature of these energy resources, it is necessary to examine them geospatially in order to determine optimal siting of renewable energy technologies; alternatively, if a renewable energy technology is sited at a specific site in order to meet a nearby load requirement (such as a solar home
system), it is necessary what the resource availability is at that location, since microclimatic variability may make even nearby data sources irrelevant.

Examples of the products derived from the methodologies described below can be found for many areas. However, one significant project that has recently been completed is the Solar and Wind Energy Resource Assessment (SWERA) Project, which provided high-resolution wind and solar resource maps for 13 countries around the world. SWERA was a project funded by the Global Environment Facility, and was cost-shared by several technical organizations around the world: NREL, the State University of New York at Albany, the National Aeronautics and Space Administration’s Langley Research Center, and the USGS/EROS Data Center in the U.S., Riso National Laboratory in Denmark, The German Aerospace Institute (DLR), The Energy Resources Institute (New Delhi, India), and the Brazilian Spatial Institute (INPE) in Sao Jose dos Campos, Brazil. The United Nations Environment Programme (UNEP) managed the project. Besides the solar and wind resource maps and underlying data sets, a variety of other relevant data products came out of this program. All of the final products and data can be found on the SWERA archive, hosted in Sioux Falls, South Dakota (http://swera.unep.net).

For wind resource assessments, NREL’s approach, known as WRAMS (Wind Resource Assessment Mapping System) relies on mesoscale numerical models such as MM5 or WRF (Weather Research and Forecasting), which can provide simulations of near-surface wind flow characteristics in complex terrain or where sharp temperature gradients might exist (such as land-sea contrasts). Typically these numerical models use available weather data, such as the National Climatic Data Center’s Integrated Surface Hourly (ISH) data network and National Center for Atmospheric Research-National Centers for Environmental Protection (NCAR-NCEP) reanalysis data as inputs. In coastal areas or island situations NREL’s wind resource mapping also relies heavily on SeaWinds data from the Quickscat satellite to obtain near-shore and near-island wind resources. WRAMS also relies on Global Land Cover Characterization (GLCC) 1-km and Regional Gap Analysis Program (ReGAP) 200-m land cover data, as well as Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Acqua and Terra Earth Observation System satellites, to obtain information such as percent tree cover and other land use information. This information is used
not only to determine roughness lengths in the numerical mesoscale models, but also to screen sites suitable for both wind and solar development in the second component of the HOMER DSS.

The numerical models are typically run at a 2.5-km resolution. However, wind resource information is often reported at the highest resolution at which a digital elevation model (DEM) can provide. Globally this has traditionally been 1-km resolution; however, in some cases in the U.S. 400-m DEM data are available. Furthermore, the Shuttle Radar Topology Mission has now been able to provide users with a 90-m DEM for much of the world. Thus, additional steps are needed beyond the 2.5-km resolution model output to depict wind resources at the higher resolutions offered by the DEM's. This can be accomplished by using a secondary high-resolution mesoscale model, empirical methods, or both. For example, with NREL’s WRAMS methodology, GISD-based empirical modeling tools have been developed to modify results from the numerical models that appear to have provided unreliable results in complex-terrain areas.

The output of the WRAMS Methodology is typically a value of wind power density at every grid-cell representative of an annual average (in order to produce monthly values, the procedure outlined above would have to be repeated for each month of the year). For mapping purposes, a classification scheme has been set up that relates a “wind power class” to a range of wind power densities. The classification scheme ranges from 1 to >7. This is specified for a specific height above ground; nominally 50-m, or near the hub-height of modern-day large wind turbines (although with the recent advent of larger and larger wind turbines, hub heights are approaching 100 m, so this standard height designation is changing). Normally, for grid-connected applications, a wind power class of 4 or above is best, while for small wind turbine applications where machines can operate in lower wind speeds, wind power class of 3 or above is suitable. Of course the wind maps are not intended to identify sites at which large wind turbines can be installed, but rather are intended to provide information to developers on where they might most effectively install wind measurement systems for further site assessment. The maps also provide a useful tool to policy makers to obtain reliable estimates on the total wind energy potential for a region.
Other well-known approaches besides NREL’s WRAMS methodology are also used to produce large-area wind resource mapping. For example, Riso National Laboratory calculates wind speeds within 200 m above the earth’s surface using KAMM, the Karlsruhe Atmospheric Mesoscale Model. Although KAMM also uses NCEP/NCAR reanalysis data, the model is based on large-scale geostrophic winds, and simulations are performed for classes of different geostrophic wind. The classes are weighted with their frequency to obtain statistics for the simulated winds. The results can then be treated as similar to real observations to make wind atlas files for WAsP (the Wind Atlas Analysis and Application Program), which are employed to predict local winds at a much higher resolution than KAMM can provide (see, for example, [http://www.risoe.dk/ita/regneserver/projects/kamm.htm](http://www.risoe.dk/ita/regneserver/projects/kamm.htm)). WAsP calculations are based on wind data measured or simulated at specific locations, and includes a complex terrain flow model, a roughness change model, and a model for sheltering obstacles. More on WAsP can be found at [http://www.wasp.dk/](http://www.wasp.dk/).

Due to the scarcity of high-quality ground-based solar resource measurements, large-area solar resource assessments in the U.S. have historically relied on the analysis of surface National Weather Service cloud cover observations. These observations are far more ubiquitous than solar measurements, and allowed NREL to develop a 1961-1990 National Solar Radiation Database for 239 surface sites. However, more recently, in the U.S. more and more reliance has been placed on Geostationary Environmental Operational Satellite (GOES) visible channel data to obtain surface reflectance information that can be used to derive high-resolution (~10-km) site-time specific solar resource data (see for example Perez, et al.). In fact, this approach has become commonplace in Europe, using Meteosat data. And the NASA Langley Research Center has recently completed a 20-year world-wide 100-km resolution Surface Solar Energy Data set derived from International Satellite Cloud Climatology Project data which is derived from data collected by all of the earth’s geostationary and polar orbiting satellites ([http://eosweb.larc.nasa.gov/sse](http://eosweb.larc.nasa.gov/sse)).

The use of satellite imagery for estimating surface solar resource characteristics over large areas has been studied for some years, and Renné et al. (1999) published a summary of approaches developed around the world. These satellite derived assessments require good knowledge of the aerosol optical depth over time.
and space, which can be obtained in part from MODIS and Advanced Very High Resolution Radiometer (AVHRR) data from polar orbiting environmental satellites.

Besides NREL and NASA, other organizations perform similar types of high-resolution solar resource data sets. For example, the German Space Agency (DLR) has been applying similar methods to Meteosat data for developing solar resource maps and data for Europe and northern Africa. DLR was also involved in the SWERA project and applied to their methodologies to several SWERA countries.

Geospatial Toolkit

Recently NREL has begun to format the solar and wind resource information into GIS software-compatible formats, and has incorporated this information, along with other geospatial data relevant to renewable energy development, into a Geospatial Toolkit (GsT). The GsT is a stand-alone, downloadable and executable software package that allows the user to overlay the wind and solar data with other geospatial data sets available for the region, such as transmission lines, transportation corridors, population (load) centers, locations of power plant facilities and substations, land use and land form data, terrain data, etc.

Not only can the user overlay various data sets of their choosing, there are also simple queries built into the toolkit, such as the amount of “windy” land (e.g. Class 3 and above) is available within a distance of 10-km of all transmission lines (minus specified exclusion areas, such as protected lands). The GsT developed at NREL makes use of the Environmental Science and Research Institute’s (ESRI’s) MapObjects software, although other platforms, including on-line web-based platforms, could also be used.

In a sense the GsT in an of itself is a DSS, since it allows the user to manipulate resource information with other critical data relevant to the deployment of renewable energy technologies to assist decision-makers in identifying and conducting preliminary assessments of possible sites for installing these systems, and supporting renewable energy policy decisions. However, it needs to be noted here that NREL has only prepared GsT’s for a few locations: the countries of Sri Lanka, Afghanistan, and Pakistan; Hebei Province.
in China, the state of Oaxaca in Mexico, and the state of Nevada. By the time of publication of this chapter, additional toolkits may also be available. As with the resource data, all toolkits developed by NREL are available for download from NREL’s website. Those toolkits developed under the SWERA project are also available from the SWERA website.

HOMER: NREL’s Micropower Optimization Model

The primary tool that makes up the DSS being described here is HOMER, NREL’s Micropower Optimization Model. HOMER is a computer model that simplifies the task of evaluating design options for both off-grid and grid-connected power systems for remote, stand-alone, and distributed generation (DG) applications. HOMER’s optimization and sensitivity analysis algorithms allow the user to evaluate the economic and technical feasibility of a large number of technology options and to account for variation in technology costs and energy resource availability. HOMER can also address system component sizing, and the adequacy of the available renewable energy resource. HOMER models both conventional and renewable energy technologies:

**Power sources:**
- solar photovoltaic (PV)
- wind turbine
- run-of-river hydropower
- Generator: diesel, gasoline, biogas, alternative and custom fuels, co-fired
- electric utility grid
- microturbine
- fuel cell

**Storage:**
- battery bank
- hydrogen

**Loads:**
- daily profiles with seasonal variation
In order to find the least cost combination of components that meet electrical and thermal loads, HOMER simulates thousands of system configurations, optimizes for lifecycle costs, and generates results of sensitivity analyses on most inputs. HOMER simulates the operation of each technology being examined by making energy balance calculations for each of the 8,760 hours in a year. For each hour, HOMER compares the electric and thermal load in the hour to the energy that the system can supply in that hour.

For systems that include batteries or fuel-powered generators, HOMER also decides for each hour how to operate the generators and whether to charge or discharge the batteries. If the system meets the loads for the entire year, HOMER estimates the lifecycle cost of the system, accounting for the capital, replacement, operation and maintenance, fuel and interest costs. The user can obtain screen views of hourly energy flows for each component as well as annual costs and performance summaries.

This and other information about HOMER is available on NREL’s web site: http://www.nrel.gov/homer/.

The web site also provides extensive examples of how HOMER is used around the world to evaluate optimized hybrid renewable power systems to meet load requirements in remote villages. Figure 1 shows a typical example of an output graphic available from HOMER.

In order to accomplish these tasks, HOMER requires information on the hourly renewable energy resources available to the technologies being studied. However, typically hour-by-hour wind and solar data are not available for most sites. Thus the user is requested to provide monthly or average information on solar and wind resources; HOMER then uses an internal weather generator to provide the best estimate of a simulated hour-by-hour data set, taking into consideration diurnal variability if the user can provide an indication of what this should be. However, these approximations represent a source (and potentially significant source) of uncertainty in the model. For those locations where a GsT is available, the GsT offers a mechanism for the user to easily ingest data from the toolkit into HOMER for the specific location of
interest. However, since the toolkit contains only monthly solar and wind data, the limitations described above still apply.

The HOMER developers have implemented various schemes to improve the reliability of resource data that is used as input for simulations. A direct link with the NASA SSE data web site enables the user to download monthly and annual solar data from any location on earth. The 100-km resolution NASA data have become a benchmark of solar resource information, due to the high quality of the modeling capability used to generate the data, the fact that the SSE is validated against numerous ground stations, and the fact that it is global in scope and now covers a 20-year period. However, the data set is still limited by a somewhat course resolution and poor validation is some areas where ground data do not exist. The procedures used to generate the SSE also have problems where land-ocean interfaces occur, and in snow-covered areas.

Linking HOMER to higher-resolution regional solar data sets would likely improve these uncertainties somewhat, but in general these data sets are also limited to monthly and seasonal values. However, since these methods rely on geostationary satellite data that provide frequent imagery of the earth’s surface, an opportunity exists to produce hourly time series data for up to several years at a 10-km resolution. This option will require significant data storage and retrieval capabilities on a server, but such a possibility now exists for future assessments.

Wind data available to HOMER is also generally limited to annual and at best monthly values. The standard HOMER interface allows the user to also designate a Weibull “k” value if this information is available. The Weibull k is a statistical means of defining the frequency distribution of the long-term hourly wind speeds at a location; this value can vary substantially depending on local terrain and microclimatic conditions. HOMER also has a provision for the user to designate the diurnal range of wind speeds, and the timing when maximum and minimum winds occur. This information then provides improved simulation of the hour-by-hour wind values. The difficulty is that there may be applications where even these statistical values are not know to the user, and are not available from the standard wind
resource maps produced for a region.

2b. Access to the HOMER DSS

HOMER was originally developed and has always been maintained by the National Renewable Energy Laboratory. The model can be downloaded free of charge from NREL’s web site at [http://www.nrel.gov/homer/default.asp](http://www.nrel.gov/homer/default.asp). The user is required to register, and registration must be updated every six months. The web site also contains a variety of guides for getting started and using the software.

Resource information required as input to HOMER is generally freely available at the web sites of the institutions developing the data. These institutions also generally maintain and continuously update the data. For example, renewable energy resource information can be found in several places on NREL’s web site, such as [http://rredc.nrel.gov](http://rredc.nrel.gov) or [www.nrel.gov/GIS](http://www.nrel.gov/GIS). NASA solar energy data, which can be easily input to HOMER, is available at [http://eosweb.larc.nasa.gov/sse](http://eosweb.larc.nasa.gov/sse). In fact, there is a specific feature built into HOMER that automatically accesses and inputs the SSE data for the specific location that the model is analyzing. Wind and solar resource data for the 13 SWERA countries can be found at [http://unep.swera.net](http://unep.swera.net). This web site is currently undergoing expansion and upgrading by the USGS/EROS Data Center in Sioux Falls, SD, and will eventually become a major clearinghouse for resource data from around the world in formats that can be readily ingested into Decision Support Tools such as HOMER.

2c. Definition of HOMER information requirements

The ideal input data format to HOMER is an hourly time series of wind and solar resource data covering a complete year (8760 values). In addition, the wind data should be representative of the wind turbine hub height that is being analyzed within HOMER. Unfortunately data sets such as these are seldom available at the specific locations for which HOMER is being applied. More typically the HOMER user will have to identify input data sets from resource maps (even within the GsT, the resource data is based on what is incorporated into the map, which may represent only a single annual value in the case of wind). Because
monthly and annual mean data are what is more typically available, HOMER has been designed to use monthly mean wind speeds (in m/s) and monthly mean solar resource values (in kw-h-m$^{-2}$-day$^{-1}$). In the case of wind, HOMER also allows for the specification of other statistical parameters related to wind speed distributions and diurnal characteristics. Furthermore, if the wind data available for input to HOMER does not represent the same height above the ground as the wind turbine’s hub height being analyzed, HOMER has internal algorithms to adjust for this. The user must specify the height above the ground for which the data represents, and a power law conversion adjusts the wind speed value to the hub height of the specific wind turbine being analyzed. HOMER then utilizes an internal weather generator that takes the input information and creates an hour-by-hour data profile representing a one-year data file. Then, HOMER calculates turbine energy output by converting each hourly value to the energy production of the machine using the manufacturer’s turbine power curve.

Besides the mean monthly wind speeds, the statistical parameters required by HOMER in order to generate the hourly data sets include the following:

- The altitude above sea level (in order to adjust for air density, since turbine performance is typically rated at sea level);
- The Weibull k value, which typically ranges from 1.5 to 2.5, depending on terrain type;
- An autocorrelation factor, which is a measure of how strongly the wind speed in one hour depends (on average) on the wind speed in the previous hour (these values typically range from 0.85 to 0.90);
- A diurnal pattern strength, which is a measure of how strongly the wind speed depends on the time of day (values are typically 0.0 to 0.4); and
- The Hour of the peak wind speed (over land areas this is typically 1400 – 1600 local time)

In the U.S. as elsewhere, wind resource maps often depict the resource in terms of wind power density, in units of watts-m$^{-2}$ rather than in wind speeds. In this case, the wind power density must be converted back...
to a mean wind speed. The relationship between wind power density \(P\) and wind speed \(v\) is given as follows:

\[
P = \frac{1}{2} \rho \Sigma v_i^3
\]

Where \(\rho\) is the density of the air and \(i\) is the individual hourly wind observation. Since the frequency distribution of wind speed over the period of a year or so follows a Weibull distribution shape, the wind power density can be converted back to a wind speed if the “k” factor in the Weibull distribution is known, as well as altitude of the site (to determine the air density).

2d. Access to and use of the HOMER DSS among the federal, state, and local levels

Because of the easy access to HOMER and to the related resource assessment data products, the HOMER DSS is freely available to all government and private entities in the U.S. and worldwide. Thousands of users from all economic sectors are using HOMER to evaluate renewable energy technology applications, particularly for off-grid use.

2e. Variation of the HOMER DSS by geographic region or characteristic

A key feature of HOMER is the evaluation of specific renewable energy technologies and related energy systems for different regions and for different applications. The HOMER model contains renewable energy technology and cost characteristics; these characteristics might change from region to region depending on local economic conditions and availability of specific equipment suppliers. Thus, if the model has not had this information updated for a specific region, a source of uncertainty is introduced into the results, since the cost conditions may not be accurate for the specific region of choice.

The same can be said about the use of renewable energy resource data as input to HOMER. Because of the location-specific dependency of resource data, use of data that is not representative of the specific region of
analysis will introduce additional uncertainties in the model results. Thus, the user should evaluate the
accuracy and relevancy of any default information that is built into HOMER, or any resource data chosen
as input to HOMER before completing the final analyses.

3. Observations used by the HOMER DSS now and of potential use in the future

This section focuses on the earth observations (of all types, from remote sensing and in situ) used or of
potential use in the HOMER DSS.

3a. Kinds of observations being used

In the previous section we provided a description of the renewable energy resource assessment related to
solar and wind technologies that are required as input to HOMER when these technologies are being
modeled. As noted in that section, developing this resource information requires the use of a variety of
earth observations. In this section we list these observations for each resource category, as well as other
types of observations relevant to the HOMER DSS.

Wind Resources

The ideal observational platform for obtaining reliable wind resource data to be input into HOMER would
be calibrated wind speed and direction measurements from a meteorological tower installed at the location
interest. These measurements should be obtained at the hub height of the wind turbine being modeled,
should be of sufficient sampling frequency to provide hourly measurements, and should be of sufficient
quality and duration to result in at least one full year of continuous measurements. Although measurements
of this quality are typically necessary at project sites where significant investments in large grid-connected
wind turbines are anticipate, and where a decision has already been made to implement a large-scale
project, it is extremely rare that this level of observations are available for most HOMER applications,
where the user is examining potential applications for proposed projects. Thus, some indirect means to
establish wind characteristics at a proposed site, such as extrapolating wind resource measurements available from a nearby location or developing a wind resource map such as described in Section 2, is required. The major global data sets typically used by NREL for wind resource assessment are summarized in Table 1:

Table 1: Major Global Data Sets Used by NREL for Wind Resource Assessment

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Type of Information</th>
<th>Source</th>
<th>Period of Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Station Data</td>
<td>Surface observations from more than 20,000 stations worldwide</td>
<td>NOAA/NCDC</td>
<td>Variable up to 2006</td>
</tr>
<tr>
<td>Upper Air Station Data</td>
<td>Rawinsonde and pibal observations at 1800 stations</td>
<td>NCAR</td>
<td>1973-2005</td>
</tr>
<tr>
<td>Satellite-derived ocean wind data</td>
<td>Wind speeds at 10-m above the ocean surface gridded to 0.25°</td>
<td>NASA/JPL</td>
<td>1988-2006</td>
</tr>
<tr>
<td>Marine Climatic Atlas of the World</td>
<td>Gridded (1.0°) statistics of historical ship wind observations</td>
<td>NOAA/NCDC</td>
<td>1854-1969</td>
</tr>
<tr>
<td>Reanalysis upper air data</td>
<td>Model-derived gridded (~200-km) upper air data</td>
<td>NCAR-NCEP</td>
<td>1958-2005</td>
</tr>
<tr>
<td>Digital Geographic Data</td>
<td>Political, hydrograph, etc.</td>
<td>ESRI</td>
<td></td>
</tr>
<tr>
<td>Digital Terrain Data</td>
<td>Elevation at 1-km spatial resolution</td>
<td>USGS/EROS</td>
<td></td>
</tr>
<tr>
<td>Digital Land Cover Data</td>
<td>Land use/cover and tree cover density at 0.5-km resolution</td>
<td>NASA/USGS</td>
<td></td>
</tr>
</tbody>
</table>
More discussion on some of these data sets is provided here:

**Surface Station Data**

In the U.S., as well as in most other countries, the main source of routine surface wind observations would be observations from nearby national weather stations, such as those routinely maintained to support aircraft operations at airports. These data can be made available to the user from the National Climatic Data Center (NCDC) in the form of the Integrated Surface Hourly (ISH) data set. This database is composed of worldwide surface weather observations from about 20,000 stations, collected and stored from sources such as the Automated Weather Network (AWN), the Global Telecommunications System (GTS), the Automated Surface Observing System (ASOS), and data keyed from paper forms (see, for example, [http://gcmd.nasa.gov/records/GCMD_C00532.html](http://gcmd.nasa.gov/records/GCMD_C00532.html)).

**Satellite-Derived Ocean Wind Data**

Ocean wind data can be obtained from the SeaWinds Scatterometer (see [http://manati.orbit.nesdis.noaa.gov/quikscat/](http://manati.orbit.nesdis.noaa.gov/quikscat/)) mounted aboard NASA’s QuickSCAT (Quick Scatterometer) satellite. QuickSCAT was launched on June 19, 1999 in a sun-synchronous polar orbit. A longer-term ocean winds data set is available from the Special Sensor Microwave/Imager data products as part of NASA’s Pathfinder Program. The SSM/I geophysical dataset consists of data derived from observations collected by SSM/I sensors carried onboard the series of Defense Meteorological Satellite Program (DMSP) polar orbiting satellites (see [http://www.ssmi.com/ssmi/ssmi_description.html#ssmi](http://www.ssmi.com/ssmi/ssmi_description.html#ssmi)).

**Reanalysis Upper Air Data**

The United States Reanalysis Data set was first made available in 1996 to provide gridded global upper air and vertical profiles of wind data derived from 1800 radiosonde and pilot balloon observations stations (Kalnay, et al. 1997). The reanalysis data were prepared by NCAR-NCEP, and can be found at...
An early analysis of the data set (Schwartz, George, ad Elliott, 1999) showed that for wind resource assessments the dataset was a promising tool for gaining a more complete understanding of vertical wind profiles around the world, but that discrepancies with actual radiosonde observations still existed. Since that time continuous improvements have been made to the NCAR-NCEP dataset, and it is has become an ever-increasingly important data source for contributing to reliable wind resource mapping activities.

Digital Terrain Data

Digital Elevation Models (DEM’s) have been accessed from the USGS/EROS data center. These models consist of a raster grid of regularly spaced elevation values that have been derived primarily from the USGS topographic map series. The USGS no longer offers DEMs, and for the U.S. these can now be accessed from the National Elevation Dataset (http://ned.usgs.gov). The Shuttle Radar Topographic Mission (SRTM) offers much higher resolution terrain data sets, which are now beginning to be used in some wind mapping exercises. These are also being distributed by USGS/EROS under agreement with NASA (http://srtm.usgs.gov).

Digital Land Cover Data

Land cover data are used to estimate roughness length parameters required for the mesoscale meteorological models used in the wind mapping process. Data from the Global Land Cover Characterization dataset provide this information at a 1-km resolution (see http://edcsns17.cr.usgs.gov/glcc/background.html). The Moderate Imaging Spectroradiometer (MODIS) is used to obtain global percent tree cover values at a spatial resolution of 0.5-km (Hansen, et al, 2003). Existing natural vegetation is also being mapped at a 200-m resolution as part of the USGS Regional Gap Analysis program. Gap analysis is a scientific method for identifying the degree to which native animal species and natural communities are represented in our present-day mix of conservation lands (Jennings and Scott, 1997).
As with wind, the ideal solar resource dataset for incorporation into HOMER would be data derived from a quality, calibrated surface solar measurement system consisting of a pyranometer and a pyrheliometer that can provide a continuous stream of hourly data for at least one year. Such data is seldom available at the site for which HOMER is being applied. Although interpolation to nearby surface radiometer data sets can be accomplished with reasonable reliable, again we must resort to estimation schemes in order to derive an in-situ data set. The solar resource assessments that NREL and others undertake make use of several different observational datasets, such as ground-based cloud cover measurements, satellite-derived cloud cover measurements, or the use of the visible channel from satellite imagery data. The major global data sets used for solar resource assessments are summarized in Table 2.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Type of Information</th>
<th>Source</th>
<th>Period of Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Station Data</td>
<td>Surface cloud observations from more than 20,000 stations worldwide</td>
<td>NOAA/NCDC</td>
<td>Variable up to 2006</td>
</tr>
<tr>
<td>World Radiation Data Center</td>
<td>Surface radiation observations from over 1000 stations worldwide</td>
<td>WRDC, St. Petersburg</td>
<td>1964-1993</td>
</tr>
<tr>
<td>Satellite Imagers</td>
<td>Imagery from the visible channel of geostationary weather satellites, 1-km resolution</td>
<td>NASA/NOAA</td>
<td>1997 to present</td>
</tr>
<tr>
<td>AERONET</td>
<td>Observations of aerosol optical depth from around the world</td>
<td>NASA/Goddard</td>
<td></td>
</tr>
<tr>
<td>GACP</td>
<td>Aerosol optical depths (generally over oceans) at 1° x</td>
<td>NASA</td>
<td>1981-2005</td>
</tr>
</tbody>
</table>
Further discussion on some of these data products is described here:

**World Radiation Data Center**

Since the early 1960’s, the World Radiation Data Center, located at the Main Geophysical Institute in St. Petersburg, Russia, has served as a clearinghouse for worldwide solar radiation measurements collected at national weather stations. The WRDC is under the auspices of the World Meteorological Organization. A web-based data set was developed by NREL in collaboration with the WRDC and can be accessed at [http://wrdc-mgo.nrel.gov/](http://wrdc-mgo.nrel.gov/). This data archive covers the period 1964-1993. For more recent data, the user should go directly to the WRDC home page at [http://wrdc.mgo.rssi.ru/](http://wrdc.mgo.rssi.ru/).

**Aerosol Optical Depths (AOD)**

After clouds, atmospheric aerosols have the greatest impact on the distribution and characteristics of solar...
resources at the earth’s surface. However, routine observations of this parameter are seldom made. Consequently a variety of surface-based and satellite-based observations are used to derive the best information possible of the temporal and spatial characteristics of the atmospheric AOD. The most prominent of the surface data sets is the AERONET (http://aeronet.gsfc.nasa.gov/), a network of automated multiwavelength sun photometers located around the world. This network also has links to other networks, where the data may be less reliable. AERONET data can be used to provide ground truth data for different satellite sensors that have been launched on a variety of sun-synchronous orbiting platforms since the 1980s, such as the Total Ozone Mapping Spectrometer (TOMS), the Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi- Angle Imaging Spectroradiometer (MISR), the latter two mounted on NASA’s Terra satellite. As noted by Gueymard (2003) determination of AOD from satellite observations is still subject to inaccuracies, particularly over land areas, due to a variety of problems such as insufficient cloud screening or interference with highly reflective surfaces. The Global Aerosol Climatology Project (GACP) was established in 1998 as part of the NASA Radiation Sciences Program and the Global Energy and Water Experiment (GEWEX). Its main objectives have been to analyze satellite radiance measurements and field observations in order to infer the global distribution of aerosols, their properties, and their seasonal and inter annual variations; and to perform advanced global and regional modeling studies of the aerosol formation, processing, and transport (http://gacp.giss.nasa.gov/).

Other sources of aerosol optical depth data include the Global Ozone Chemistry Aerosol Transport (GOCART) model (http://code916.gsfc.nasa.gov/People/Chin/gocartinfo.html) which is derived from a chemical transport model. An older dataset, the Global Aerosol Dataset (GADS), which can be found at http://www.lrz-muenchen.de/~uh234an/www/radaer/gads.html, is a theoretical data set providing aerosol properties averaged in space and time on a 5° x 5° grid. (Koepke, et al., 1997).

3b. Limitations on the usefulness of observations

In the absence of direct solar and wind resource measurements at the location for which HOMER is being applied, the observations described in Section 3a, when used in the wind and solar resource mapping
techniques described in Section 2, will together provide useful approximations of the data required as input to HOMER. However, the observations all have limitations in that they do not explicitly provide direct observation of the data value required for the mapping techniques, but only approximations based on the use of algorithms to convert a signal into the parameter of interest. These limitations for some of these datasets are summarized here:

Surface Station Data: These are generally not available at the specific locations at which HOMER would be applied, so interpolation is required. Furthermore, they generally do not have actual solar measurements, but rather proxies for these measurements (i.e. cloud cover). The wind data is generally collected at 10-m above the ground or less, and the anemometer may not be in a well-exposed condition. When the station observations are derived from human observations, they represent samples of a few minutes duration every one or three hours, thereby many of the observations are missing. For those stations that have switched from human observations to Automated Surface Observation Stations (ASOS), the means of observation has changed significantly from the human observations, representing a discontinuity in long-term records. Occasional equipment or the entire station is moved without changing the station ID number, which can also cause a discontinuity in observations.

Satellite-Derived Ocean Wind Data: These data are not based on direct observation of the wind speed at 10-m above the ocean surface, but rather from an algorithm that infers wind speeds based on the wave height observations provided by the scatter meters.

Satellite-Derived Cloud Cover and Solar Radiation Data: These data sets are derived from observations of the reflectance of the solar radiation from the earth-atmosphere system. Although it could be argued that this method does provide a direct observation of clouds, the solar radiation values are determined from an algorithm that converts knowledge of the reflectance observation, the solar radiation at the top of the atmosphere, and the transmissivity characteristics of the atmosphere to develop estimates of solar radiation.
Aerosol Optical Depth: Considerable research is underway to improve the algorithms used to convert multi-spectral imagery of the earth’s surface to aerosol optical depth. The satellite-derived methods have additional shortcomings over land surfaces, where irregular land-surface features make application of the algorithms complicated and uncertain.

3c. Reliability of the observations

For those observations that provide inputs to the solar and wind resource data, their reliability can vary from parameter to parameter. Generally all of the observations used to produce data values required for solar and wind assessments have undergone rigorous testing, evaluation, and validation. This research has been undertaken by a variety of institutions, including the institutions gathering the observations (e.g. NASA and NOAA) as well as the institutions incorporating the observations into resource mapping techniques (e.g. NREL). Many of the satellite-derived observations of critical parameters will be less reliable than in-situ observations, but must still be used due to the scarcity of in-situ measurement stations.

3d. What kinds of observations could be useful in the near future

All of the observations currently available will continue to be of critical value in the near future. For renewable energy resource mapping, improved observations of key weather parameters (wind speed and direction at various heights above the ground and over the open oceans at higher and higher spatial resolutions, improved ways of differentiating snow cover and bright reflecting surfaces from clouds, etc.) will always be of value to the renewable energy community. New, more accurate methods of related parameters such as aerosol optical depth would result in improvements in the resource data. All of these steps will lead to improvements in the quality of outputs from renewable energy Decision Support Systems such as HOMER.

4. Uncertainty
Application of the HOMER DSS involves a variety of input data types, all of which can have a level of uncertainty attached to them. HOMER addresses uncertainty by allowing the user to perform sensitivity analyses for any particular input variable or combination of variables. HOMER repeats its optimization process for each value of that variable and provides displays to allow the user to see how results are affected. An input variable for which the user has specified multiple values is called a sensitivity variable, and users can define as many of these variables as they wish. In HOMER, a “one-dimensional” sensitivity analysis is done if there is a single sensitivity variable, such as the mean monthly wind speed. If there are two or more sensitivity variables the sensitivity analysis is “two” or “multi-dimensional”. HOMER has powerful graphical capabilities to allow the user to examine the results of sensitivity analyses of two or more dimensions. This is important for the decision maker, who must factor in the uncertainties of input variables in order to make a final judgment on the outputs of the model.

The amount of uncertainty associated with resource data is largely dependent on how the data are obtained. Quality in-situ measurements of wind and solar data in formats suitable for renewable energy applications over a sufficient period of time (one year or more) can have uncertainties of less than +/- 3% of the true value. However, when estimation methods are required, such as the use of earth observations and modeling and empirical techniques, uncertainties can be as much as +/- 10% or more. These uncertainties are highest for shorter-term data sets, and are lower when annual average values are being used, since throughout the year errors in the estimation methods have a tendency to compensate among the individual values.

As a general rule, the error in estimating a renewable energy system performance over a year is roughly linear to the error in the input resource data. This is true even for wind energy systems, even though the power of the wind available to a wind turbine is a function of the cube of the wind speed. It turns out that the turbine operating characteristics, where turbines typically do not provide any power at all until a certain threshold speed is reached, and then the power output increases linearly with wind speed until the winds are so high that the turbine must shut down, are such that the annual turbine power output is roughly linear to the mean annual wind speed. Thus, an uncertainty in the annual wind or solar resource of +/- 10% results in an uncertainty of expected renewable energy technology output of approximately +/- 10%.
5. Global change information and the HOMER DSS

This section expands the discussion of the HOMER DSS to include the relationship of HOMER and its input data requirements with global change information.

5a. Reliance of HOMER DSS global change information

As shown in the previous section, a number of observations that provide information on global change are also used in either direct or indirect ways as input to HOMER. These observations related primarily to the renewable energy resource information that is required for HOMER applications. Renewable energy system performance is highly dependent on the local energy resources available to the technologies. The extent and characteristics of these resources is driven by weather and local climate conditions, which happens to be the primary area in which earth observational systems monitoring climate change are addressing. Thus, as users seek access to observations to support renewable energy resource assessments, they will invariably be seeking certain global change observational data.

Specifically, users will be seeking global change data related to atmospheric properties that support the assessment of solar and wind energy resources, such as wind and solar data, and atmospheric parameters important for estimating these data. For example, major data sets used in solar and wind energy assessments include long term reanalysis data, climatological surface weather observations, and a variety of satellite observations from both active and passive onboard remote sensors.

Key factors in affecting the choice of these observational data are their relevance to conducting reliable solar and wind energy resource assessment, their ease of access, and low or no cost to the user. The extensive list of observational data being used in the assessment of renewable energy resources represents
5b. How the HOMER DSS can support climate-related management decision-making among US government agencies

Although HOMER was not intentionally designed to be a climate-related management decision-making tool, the HOMER DSS has attributes that can support these decisions. For example, as we explore mechanisms for mitigating the growth of carbon emissions in the atmosphere, the HOMER DSS can be deployed to evaluate how renewable energy systems can be used cost-effectively to displace energy systems dependent on fossil fuels. Clearly, the science results and global change data and information products coming out of our reanalysis and satellite-borne programs are of critical importance to HOMER for supporting this decision-making process. Given that the pertinent observational data sets have been developed primarily by federal agencies, these data sets tend to be freely available or available at a relatively small cost, given the costs involved in making the observations in the first place. However, as we have noted in previous sections, the use of global change observations as input to the resource assessment data required by HOMER is not the optimal choice of data; ideally, in-situ (site-specific) measurements of wind and solar data relevant to the technologies being analyzed would be the most useful and accurate data to have for HOMER, if they were available.
Figure 1: Example of HOMER output graphic. The column on the left provides a diagram showing the load characteristics and the types of equipment considered to meet the load. The optimal system design graphic shows the range within specified diesel fuel prices and wind energy resources for which various system types are most economical (for example, a wind/diesel/battery system becomes the most optimal configuration to meet the load requirement for wind speeds greater than 5 m/s and fuel costs at 0.45 to 0.75 $/l.
Chapter 4

Decision Support for Public Health

Lead Author: Gregory E. Glass

1. Introduction

Public health is an approach to medicine that focuses on the health of community members as a whole and the mission of public health is to assure conditions in which people can be healthy (AJPH; http://www.medterms.com/script/main/art.asp?articlekey=14268). This overall task is achieved by assessing and monitoring populations at risk to identify health problems and establishing priorities, to formulate policies to solve identified problems and to assure populations have access to appropriate care, including health promotion, disease prevention and evaluation of care. As such, during the past century, the notable public health achievements as identified by the U.S. Centers for Disease Control and Prevention (CDC) include: vaccinations and treatments against infectious diseases, injury prevention strategies, reduced occupational exposures to toxins, improved food and water safety, decreases in childhood and maternal mortality, and safer water sources. As such, many of the key issues related to public health are incorporated in previous chapters in this report, though they may not focus on public health, as such. Regardless, public health may represent a key constraint in problem solving under climate change situations.

Because public health is an important outcome component of decision support tools (DSTs) involving air quality, water management, energy management and agricultural efficiency issues, it was decided to focus on a unique public health aspect of DST/DSS by examining infectious disease systems. Infectious diseases remain a significant burden to populations both globally, as well as within the United States. Some of these, such as syphilis and measles involve a relatively
simple dynamic of the human host population and the parasite – be it a virus, a bacterium or other micro-organism. Other disease systems include additional species for their successful transmission – either wildlife species that maintain the parasite (zoonoses) or there are insect or arthropod vectors that serve to transmit the parasites either among people or from the wildlife to people (vector-borne diseases).

Some of the most significant diseases globally are vector borne or zoonotic diseases. Examples include malaria and dengue. In addition, many newly recognized (= emerging) diseases either are zoonoses, such as SARS, or appear to have been derived from zoonoses that became established in human populations (e.g. HIV). Changes in rates of contact between component populations of these disease systems alter the rates of infectious disease (Glass 2007). Many of these changes come about through activities involving the movement of human populations into areas where these pathogen systems normally occur or they can occur through human activities that introduce materials with infectious agents into areas where they were not known to occur previously (Gubler et al. 2001). The introduction of West Nile virus from its endemic area in Africa, the Middle East and Eastern Europe into North America and its subsequent spread across the continent is a recent example. The impacts on wildlife, human and agricultural production are an excellent example of the economic consequence of such emergent disease systems.

More recently, attention has focused on the potential impact that climate change could have on infectious disease systems, especially those with vector or zoonotic components (e.g. Gubler et al. 2001). Alterations in climate could impact the abundances or interactions of vector and reservoir populations, or the way in which human populations interact with them (Gubler, 2004). In addition, there is speculation that climate change will alter the locations where disease systems are established, shifting the human population that is at risk from these infectious diseases (e.g. Brownstein et al. 2005; Fox, 2007)

Unlike many of the other applications in this report where earth observations and modeling are of growing importance, the use of earth observations by the public health community has been sporadic and incomplete. Although early demonstrations showed their utility for identifying locations and times that vector borne diseases were likely to occur (e.g. Linthicum et al., 1987;
Beck et al 1997), growth of their application has been comparatively slow. Details of the barriers to implementation include the need to “scavenge” data from earth observations platforms as none of these are designed for monitoring disease risk. This is not an insurmountable problem and in fact, few applications of earth observations have dedicated sensors. However, disease monitoring requires a long history of recorded data to provide information concerning the changes in population distribution and the environmental conditions associated with outbreaks of disease. Detailed spectral and spatial data need to be of sufficient resolution and the frequency of observations must be high enough to enable identification of changing conditions (Glass 2007).

As a consequence, many DSTs undergoing development have substantial integration of earth observations but lack end-to-end public health outcome – particularly when focusing on infectious diseases. Therefore, the Decision Support System to Prevent Lyme Disease (DDSPL) supported by the CDC and Yale University was selected to demonstrate the potential utility of these systems within the context of climate change science. Lyme disease is a vector-borne, zoonotic bacterial disease. In the United States it is caused by the spirochete, *Borrelia burgdorferi* and it is the most common vector-borne disease in this country with tens of thousands of cases annually (Piesman and Gern 2004). Most human cases occur in the Eastern and upper Mid-West portions of the U.S., although there is a secondary focus along the West Coast of the country. In the primary focus, the black-legged tick, of the genus *Ixodes*, is most often found infected with *B. burgdorferi*.

2. Description of DDSPL

The diverse ways in which Lyme disease presents itself in different people has made it a public health challenge to ensure that proper priorities are established, to formulate policies to solve the problem and to assure populations have access to appropriate care. The CDC uses DDSPL to address questions related to the likely distribution of Lyme disease east of the 100th meridian, where most cases occur (Brownstein et al. 2003). This is done by identifying the likely geographic distribution of the primary tick vector (the black-legged) tick in this region. DDSPL
uses field reports of the known distribution of collected tick vectors, as well as sites with repeated sampling without ticks as the outcome space. DDSPL uses satellite data, and derived products such as land cover characteristics, census boundary files and meteorological data files to identify the best statistical predictor of the presence of black-legged ticks within the region. Land cover is derived from multi-date Landsat TM imagery and 10 m panchromatic imagery.

DDSPL combines the satellite and climate data with the field survey data in spatially explicit statistical models to generate assessment products of the distribution of the tick vector. These models are validated by field surveys in additional areas and the sensitivity and specificity of the results determined (Figure 1). Thus, the DDSPL is primarily a DST for prioritizing the likely geographic extent of the primary vector of Lyme disease in this region (Figure 1 & 2). It currently stops short of characterizing the risk of disease in the human population but is intended to delimit the area within which Lyme disease (and other diseases caused by additional pathogens carried by the ticks) might occur (Figure 2). Researchers at Yale University are responsible for developing and validating appropriate analytical methods to develop interpretations that can deal with many of the challenges of spatially structured data, as well as the acquisition of Earth Science data that are used for model DDSPL predictions.

3. Potential Future Use and Limits

Future use of DDSPL depends to a very great extent on public health policy decisions exterior to the DST. The perspective of the role that Lyme disease prevention rather than treatment of diseased individuals will play is a key aspect of the importance that DDSPL will experience. Studies have shown that even in Lyme disease endemic regions, risk communication often fails to reduce the likelihood of infection (Malouin, et al 2003). In addition, the removal of the Lyme disease vaccine from the general public has eliminated this as a current strategy available to reduce the disease burden. Thus, the extent to which treatment modalities rather than prevention of infection will drive the public health response in the near future will play a major role in the future use of DDSPL. However, even if the decision is made to focus on treatment of potentially infected individuals DDSPL may still play an important role by identifying regions where disease
risk may be low – helping health care workers to focus clinical diagnoses on alternate causes.

Presuming that the DST continues to be used, the need for alternative/improved earth science data to clarify environmental data for DDSPL such as land cover, temperature and moisture regimes is currently uncertain. The present system reports a sensitivity of 88% and specificity of 89% -- generally considered a highly satisfactory result. Sensitivity and specificity are two primary measures of a method’s validity. Sensitivity, in the DDSPL model, refers to the expected proportion of times (88%) that ticks would be found when field surveys were conducted at sites that the DDSPL predicted they should occur. Specificity refers to the proportion of times (89%) that a survey would not be able to find times at sites where the DDSPL said they should not occur. These two measures provide an estimate of the ‘confidence’ the user can have in the DST prediction (Selvin 1991).

Typically, patterns of weather regimes appear to have a greater impact on distribution than more detailed information on land cover patterns. However, some studies indicate that fragmentation of forest cover and landscape distribution at fairly fine spatial resolution can substantially alter patterns of human disease risk (Brownstein et al 2005). These results also suggest that human incidence of disease may, in some areas of high transmission, be decoupled from the model constructed for vector abundance. When coupled with the stated accuracy of the DDSPL in identifying vector distribution, this would suggest that future efforts will probably require an additional model structure that includes sociological/behavioral factors of the human population that puts it at varying degrees of risk. An additional limit of the DDSPL is that it does not explicitly incorporate human health outcomes in its analyses. In part, this reflects a public health infrastructure issue that limits detailed information on the distribution of human disease to (typically) local and state health agencies. Some localized data (e.g. Brownstein et al 2005) of human health outcomes have been used to evaluate the utility of DDSPL.

4. Uncertainty
Uncertainty in decision making from DDSPL is based on the results of statistical analyses in which standard statistical models with spatially explicit components, such as autologistic intercepts of logistic models, are used to account for spatial autocorrelation in outcomes. The statistical analyses are well-supported theoretically. Typical calibration approaches involve model construction followed by in-field validation. Accuracy of classification is then assessed in a sensitivity-specificity paradigm.

There are a number of public health issues that affect the certainty of the DDSPL (and any DST) that are extrinsic to the system or tool. Accuracy in clinical diagnoses (both false positives and negatives), as well as reporting accuracy can affect the evaluation of the tool’s utility. Currently, this is an issue of serious contention and forms part of the rationale for focusing on accurately identifying the distribution of the primary tick vector, as an integral step in delimiting the distribution of the disease.

5. Global Change Information and DDSPL

The relationship between climate and public health outcomes is complex. It is affected both by the direction and strength of the relationship between climatic variability and the component populations that make up a disease system, and the human response to changes in disease risk (Gubler 2004).

The DDSPL is one of the few public health decision support tools that has explicitly evaluated the potential impact of climate change scenarios on this infectious disease system. Assuming that evolutionary responses of the black-legged tick, *B. burgdorferi* and the reservoir zoonotic species remains little changed under rapid climate change, Brownstein et al (2005) evaluated anticipated changes in the distribution and extent of disease risk.

This analysis used the basic climate-land cover suitability model developed for DDSPL and selected the Canadian Global Coupled Model (CGCM1) under two historically forced integrations. The first with a 1%/year increase in greenhouse gas emissions and the second with greenhouse gas and sulfate aerosol changes, result in a 4.9 and 3.8 C increase in global mean temperature by 2080. Near (2020), mid (2050) and farpoint (2080) outcomes were evaluated.
(Figure 3). The choice of CGCM1 was based on the Intergovernmental Panel on Climate Change criteria for vintage, resolution and validity (Brownstein et al 2005).

Extrapolation of the analyses suggest that the tick vector will experience a significant range expansion into Canada but will also experience a likely loss of habitat range in the current southern portion of its range (Figure 3). It also is anticipated that its range will shift in the central region of North America – where it is currently absent.

These long range forecasts disguise a more dynamic process with ranges initially decreasing during near and mid-term time frames. This range reduction is later reversed in the long-term producing the overall pattern described by the authors. The impact in range distribution also produces an overall decrease in human disease risk as suitable areas move from areas of primary human concentration to areas that are anticipated to be less well populated.
Figure 1. Relationship between the occurrence of black-legged tick presence at a site and minimum temperature (top) and evaluation of model (bottom). From Brownstein et al. 2003 Env. Hlth Perspect. **Top Panel:** Log odds plot for relationship between *I. Scapularis* population maintenance and minimum temperature (T). Minimum temperature showed a strong positive association with odds of an established *I. Scapularis* population. According to good-ness of fit testing, the relationship was fit best by a fourth order polynomial regression ($R^2 = 0.97$) Log odds = 0.0000067$^4$ + 0.00027$^3$ - 0.0027$^2$ + 0.0002$T$ - 0.8412. **Bottom Panel:** ROC Plot describing the accuracy of the autologistic model. This method graphs sensitivity versus 1-specificity over all possible cutoff probabilities. The AUC is a measure of overall fit, where 0.5 (a 1:1 line) indicates a chance performance (dashed line). The plot for the autologistic model significantly outperformed the chance model with an accuracy of 0.95 ($p<0.00005$).
Figure 2. Forecast geographic distribution of the black-legged tick vector east of the 100th meridian in the United States for DSSPL. From Brownstein et al (2003) Envr. Hlth. Perspect. 2a. New distribution map for *I. Scapularis* in the United States. To determine whether a given cell can support *I. Scapularis* populations, a probability cutoff point for habitat suitability from the autologistic model was assessed by sensitivity analysis. A threshold of 21% probability of establishment was selected, giving a sensitivity of 97% and a specificity of 86%. This cutoff was used to reclassify the reported distribution map (Dennis et al. 1998). The autologistic model defined 81% of the reported locations (n=427) as established and 14% of the absent areas (n=2,327) as suitable. All other reported and absent areas were considered unsuitable. All areas previously defined as established maintained the same classification.
Figure 3. Forecast change in black-legged tick distribution in Eastern and Central North America under climate change scenarios using DSSPL. From Brownstein et al (2005) EcoHealth
Chapter 5

“Decision Support for Water Management”

Lead Author: Holly C. Hartmann

1. Introduction

Water resource managers have long been incorporating information related to climate in their decisions. The tremendous, regionally ubiquitous, investments in infrastructure to reduce flooding (e.g., levees, reservoirs) or assure reliable water supplies (e.g., reservoirs, groundwater development, irrigation systems, water allocation and transfer agreements) reflect societal goals to mitigate the impacts of climate variability at multiple time and space scales. However, droughts, floods, and increasing demands on available water supplies consistently create concern, and even crises, for water resources management.

The growing financial, political, social, and environmental costs of infrastructure options, such as large reservoirs, levee systems, and interbasin water diversions, have shifted the focus of large water management institutions to optimizing operations of existing projects (Bureau of Reclamation, 1992; Beard, 1993; Stakhiv, 2003). In many cases, this includes improving project returns (both economic and non-economic) outside the range of conditions considered in original procedures (e.g., optimizing returns under average conditions in addition to reducing damages during extreme events). For example, although exact accounting is difficult, potential values associated with appropriate use of accurate hydrometeorologic predictions generally range from the millions to the billions of dollars [e.g., National Hydrologic Warning Council, 2002]; there are also non-monetary values associated with more efficient, equitable, and environmentally sustainable decisions related to water resources.

Further, increasingly diverse, and often conflicting, demands prompt searches for additional potential tradeoffs among interests, by considering a broader range of hydroclimatic conditions, such as the Bureau of Reclamation’s efforts to mimic historical floods for sustaining riverine habitats (e.g.,
Congressional Budget Office, 1997; Pulwarty and Melis, 2000). As options for infrastructural solutions to water problems become constrained, the focus of water management must increasingly shift to make better use of existing resources, even in the face of extreme natural variability; agencies, such as the Bureau of Reclamation, that historically focused on building reservoirs, canals, and other infrastructure as a way to buffer against extreme conditions, have shifted their emphasis to system optimization even as climate events have proved more variable than initially considered (Congressional Budget Office, 1997).

Governments have made large investments to improve climate information and understanding over the past decades, through satellites, in situ measuring networks, supercomputers, and research programs. However, there has been broad disappointment in the extent to which improvements in hydroclimatic science from large-scale research programs have affected resource management practices in general (Pielke, 1995; 2001; NRC, 1998a, 1999a), and water resource management in particular (NRC, 1998b, 1999b,c). For example, seasonal climate outlooks have been slow to enter water management decision processes, even though they have improved greatly over the past twenty years (Hartmann et al., 2002, 2003). Several national and international programs have explicitly identified as an important objective ensuring that improved data products, conceptual models, and predictions (forecasts and scenarios) are useful to the water resources management community (Endreny et al., 2003; Lawford et al., 2005).

However, the water resources management milieu is complex and diverse, and climate influences are only one factor among many affecting water management policies and practices. Many reasons exist for the slow adoption of advanced scientific information in water management, including lack of familiarity with available information, disconnects between the specific information available (e.g., variables, spatiotemporal timescales) and those relevant to decision makers, skepticism about the quality and applicability of information, and institutional impediments such as the inflexible nature of many multi-jurisdictional water management agreements (Changnon, 1990; Kenney, 1995; Pulwarty and Redmond, 1997; Pagano et al., 2001, 2002; Jacobs, 2002; Jacobs and Pulwarty, 2003).

Several ongoing efforts are leading the way forward to establish more effective ways of incorporating earth observations into water resources management (Pulwarty, 2002; Office of Global Programs, 2004); while diverse in their details, all link natural variability, analytical and predictive
technologies, and water management decisions within an end-to-end context extending from data through
large-scale analyses and predictions (forecasts or scenarios), prediction evaluation, impacts assessment,
applications, and evaluations of applications (e.g., Young, 1995; Miles et al., 2000). These efforts also
realize that the onus is not simply on the water management community to become more adaptable. Rather,
more effective application of evolving hydroclimatic information requires coordinated efforts among the
research, operational product generation, and water management communities.

End-to-end decision support tools that embody unique resource management circumstances enable
formal, and more objective, linkages between meteorological, hydrologic, and institutional processes.
Typically, these end-to-end tools are developed for organizations making decisions with high impact (e.g.,
state or national agencies) or high economic value (e.g., hydropower production), and which possess the
technical and managerial abilities to efficiently exploit research advances. When linked to socioeconomic
models incorporating detailed information about the choices open to decision-makers and their tolerance
for risk, these end-to-end tools also enable explicit assessment of the impacts of scientific and technological
research advances.

This chapter describes an end-to-end decision support tool, RiverWare, that facilitates coordinated
efforts among the research, operational product generation, and water management communities.
RiverWare emerged from an early and sustained effort by several federal agencies to develop generic tools
to support the assessment of water resources management options in river basins with multiple reservoirs
and multiple management objectives (Frevert et al., 2006). RiverWare was selected for use as a case study
because it has been used in a variety of settings, by multiple agencies, and over a longer period than many
other decision support tools used in water management. Further, RiverWare can explicitly accommodate a
broad range of resource management concerns (e.g., flood control, recreation, navigation, water supply,
water quality, power production). RiverWare can also consider perspectives ranging from day-to-day
operations scheduling to long-range planning, and can accommodate a variety of climate observations,
forecasts, and other projections.

2. Description of the Decision Support Tool
2a. What are the tools?
RiverWare is a generalized software tool that can be used to develop detailed site-specific models of complex river basin systems, without the need for agencies or other users to maintain the supporting computer code (Zagona et al., 2001, 2005). RiverWare consists of extensible libraries of modeling algorithms, numerical techniques for solving equations, and a rule-based language for expressing water resources management policies. Because RiverWare uses an object-oriented approach in its foundational software, policy options are more easily and intuitively specified, as they are separated from the details of modeling hydrologic processes and determining their solution (Magee and Zagona, 2005). One of the important advantages of RiverWare compared to other river system models is that the policy options are defined through the model interface, rather than being hidden within the software code and unavailable to all except computer programmers (Gilmore et al., 2000).

2b. Who “owns” or “operates/maintains” them?

RiverWare was developed by the University of Colorado-Boulder’s Center for Advanced Decision Support for Water and Environmental Systems (CADSWES) in collaboration with the Bureau of Reclamation, Tennessee Valley Authority, and the Army Corps of Engineers (Frevert et al., 2006). CADSWES continues to develop and maintain the RiverWare software, as well as offer training and support for RiverWare users (see http://cadswes.colorado.edu). RiverWare users purchase licenses for using the system, but do not make changes to the software itself. However, users can write new modules that CADSWES can integrate into RiverWare for use in other applications.

2c. How are requirements for information defined and conveyed?

RiverWare requirements are multi-dimensional. RiverWare is implemented for use on Windows or Unix Solaris systems, as described in the requirements document (URL: http://cadswes.colorado.edu/PDF/RiverWare/RecommendedMinimumSystemsRequirements.pdf). An extensive manual is also available (URL: http://cadswes.colorado.edu/PDF/ReleaseNotes/RiverWare Help.pdf). The learning curve for RiverWare is fairly steep. CADSWES offers two training courses related to RiverWare, with each costing $1000/person/class. The initial training class, lasting three days, covers topics important for general simulation modeling, including managing scenarios within RiverWare and incorporating policy options.
through rule-based simulation. The second class, also lasting three days, covers rule-based simulation in more detail, including creating basin policies and examining water policy options.

RiverWare makes extensive use of graphical user interfaces (GUIs), rather than requiring users to work directly with the software code. Further, a specific river system and its infrastructure operating policies are defined by the data supplied to RiverWare. This allows incorporation of new basin features (e.g., reservoirs), operating policies, and hydroclimatic conditions without users having to write software code.

Users construct a river basin model by selecting “objects” (e.g., reservoirs, river reaches, tributary confluences) from a palette, naming them, linking them together, and specifying data that define their attributes (e.g., reservoir capacity). Users also select specific computational algorithms (e.g., for routing flows in a river reach, for calculating water levels in the tailwaters of reservoirs), as well as computational timesteps (e.g., hourly, daily, monthly). Through the GUIs, users also define operating policies as system constraints or rules for achieving system management goals (e.g., related to flood control, water supplies, water quality, navigation, recreation, power generation). Utilities within RiverWare enable users to automatically execute many simulations, including accessing external data or exporting results of model runs.

2d. Does access to and use of the tools vary among the federal, state, and local levels?

According to CADSWES, RiverWare is used by more than 75 federal and state agencies, private sector consultants, universities and research institutes, and other entities, such as water districts. RiverWare is available to any group willing and able to pay for access, both in terms of finances and in educational effort. Development of RiverWare applications requires a site license from CADSWES. Government and commercial uses cost $6500 for a single-node license that requires all use occur at the same location within the same organization; a similar license limited to academic and research uses is $3000, with use restricted to teaching and research activities only. Upgrading to a 5-node license costs $7500 and $2250 for governmental/commercial and academic/research applications, respectively, while initial 5-node licenses are $11,500 and $4500, respectively. Annual renewals cost $2500 and $750, respectively, for single-node installations, and $5000 and $1500, respectively, for 5-node licenses. Technical support is $100/hour.
Clearly, the costs associated with using RiverWare mean that small communities and civic groups are unlikely to implement their own applications for assessing water management options. Rather, large agencies with technical staff or the means to fund university research or consultants are the most likely users of RiverWare. They then mediate the access of stakeholders to assessments of water management options through traditional public processes (e.g., Environmental Impact Statements).

2e. Does the use of the decision support tool vary by geographic region or characteristic?

Consistent with the intent of its original design, use of RiverWare varies widely, depending on the specific application. An early application was its use for scheduling reservoir operations by the Tennessee Valley Authority (Eshenbach, 2001). In that application, RiverWare was used to define the physical and economic characteristics of the multi-reservoir system, including power production economics; to prioritize the policy goals that governed the reservoir operations; and to specify parameters for linear optimization of system objectives. In another application, RiverWare was used to balance the competing priorities of minimum instream flows and consumptive water use in the operation of the Flaming Gorge Reservoir in Colorado (Wheeler et al., 2002).

While day-to-day scheduling of reservoir operations is more a function of weather than climate, the use of seasonal climate forecasts to optimize reservoir operations has long been a goal for water resources management. RiverWare is being implemented for the Truckee-Carson River basin in Nevada to investigate the impact of incorporating climate outlooks into an operational water management framework that prioritizes irrigation water supplies, interbasin diversions, and fish habitat (Grantz et al., 2007). An example application to the Truckee River using a hypothetical operating policy indicated that fish populations could benefit from purchases of water rights for reservoir releases to mitigate warm summer stream temperatures resulting from low flows and high air temperatures (Neumann et al., 2006).

RiverWare has also been used to evaluate politically charged management strategies, including water transfers proposed in California’s Quantification Settlement Agreement and the Bureau of Reclamation’s Inadvertent Overrun Policy, instream flows sufficient to restore biodiversity in the Colorado River delta, and conserving riparian habitat while accommodating future water and power development in the BOR Multiple Species Conservation Program (Wheeler et al., 2002).
RiverWare played a key role in negotiations by seven Western states concerning how the Colorado River should be managed, and river flows distributed among the states, during times of drought. The Bureau of Reclamation implemented a special version of the RiverWare model of the Colorado River and its many reservoirs, diversions, and watersheds (Jerla, 2005). The model was used to provide support to the Basin States Modeling Work Group Committee over an 18-month period, as they assessed different operational strategies under different hydrologic scenarios, including extreme drought.

Some RiverWare applications require the development of new functionalities. For example, in an application for the Pecos River in New Mexico, engineers had to develop new methods and software code for realistic routing of summer monsoon-related flood waves downstream (Boroughs and Zagona, 2002). However, with its modular, object-oriented design, new methods developed by others can be vetted and made available as libraries for future applications by others.

3. Observations Used by the Decision Support Tool Now and of Potential Use in the Future

3a. What kinds of observations are being used?

A RiverWare application describes and models a river system, including its natural river reaches, infrastructure (e.g., reservoirs, diversion connections, and other conveyances), and policies (e.g., minimum instream flow requirements, trades between water users). Such an application is tracking water as it moves through the river system. Traditional hydrologic models that track the transformation of precipitation (e.g., rain, snow) into soil moisture and streamflow are not part of RiverWare. Rather, RiverWare considers supplies of water to the system as data input. Thus, direct use of earth observations, such as those available from satellites and remote sensing, is limited within RiverWare.

The types of observations that may ultimately feed into RiverWare applications depend on the timescale of the situation. Operational scheduling of reservoir releases will depend on orders of water from downstream users (e.g., irrigation districts) that are largely affected by day-to-day weather conditions as well as seasonally varying demands. In these cases, the important observations are the near real-time estimates of conditions within the river basin system relative to constraints on system operation, such as reservoir storage levels, flows or water temperatures at specific river locations. Considerations of meteorology are mediated by those placing the water orders, or through short-term weather forecasts that
may affect operations when the system is near some constraint (e.g., prospects for flood flows when
reservoir levels are near peak storage capacity). In these situations, the important observations are recent
extreme precipitation events and their location, which may be provided by in situ monitoring networks
ranging from first-order weather stations (typically at airports) to radar.

For mid-range applications, such as planning for operations over the next season or year, seasonal
water supply outlooks of total seasonal runoff are routinely used in making commitments for water
deliveries, determining industrial and agricultural water allocation, and carrying out reservoir operations. In
these applications, it is important for water managers to keep track of the current state of the watershed,
which affects the transformation of precipitation into water supplies available to the river system. Such
observations are used, however, as part of the independent hydrologic models that provide input to a
specific RiverWare application rather than directly within RiverWare. In these situations, the important
observations are those that provide boundary or forcing conditions for the independent hydrologic models,
including snowpack moisture storage, soil moisture, precipitation (intensity, duration, spatial distribution),
air temperature, humidity, winds, and other meteorological conditions. Remote sensing data from satellites
such as AMSR, ICESAT, MODIS, and TRIMM are furnishing many of these required data products at
significantly higher spatial resolution that can be acquired through in-situ observations.

For long-term planning applications, observations are used even less directly. Rather, in many
western US applications, observed streamflows are adjusted to remove the effects of reservoir management,
interbasin diversions, and water withdrawals. The adjusted flows, termed “naturalized flows”, may be used
as input to RiverWare applications to assess the impact of different management options. Use of
naturalized flows is fraught with problems, but a central issue is poor monitoring of actual human impacts,
especially historical withdrawals, diversions, and return flows (e.g., from irrigation). Alternative
approaches include the use of proxy streamflows (e.g., from paleoclimatological indicators) or output from
hydrologic modeling studies (Hartmann, 2005). For example, Tarboton (1995) developed hydrologic
scenarios for severe sustained drought in the Colorado River basin, based on streamflows reconstructed
from centuries of tree-ring records; the scenarios were used in an assessment of management options using
a precursor to the current RiverWare application to the Colorado River system.
3b. What limits usefulness of observations being used?

The usefulness of the observations used within RiverWare depends on the specific implementation defined by the user, as well as the quality of the information itself. For example, one common direct use of climate information for long-term planning includes hydrologic and hydraulic routing of ‘design storms’ of various magnitudes and likelihoods (Urbanas and Roesner, 1993), with the storms based on analyses of the available instrumental record. However, those instrumental records have often been too short to adequately express climate variability and resulting impacts, regardless of the specific tools (e.g., RiverWare) used to do the hydrologic or hydraulic routing.

Because RiverWare applications work with water supplies specified by the user, in forecasting applications (e.g., planning for scheduling operations), the use of observations is mediated by the hydrologic model that transforms weather and climate into streamflows and evaporative water demands. In these situations, from an operational forecasting perspective, the stream of observation inputs for the hydrologic models must be dependable, without downtime or large data gaps, and data processing, model simulation, and creation of forecast products must be fast and efficient.

3c. How reliable are the observations that are used?

The reliability of observations for driving hydrologic models that may provide input to RiverWare applications is the subject of much ongoing research. The hydrologic models, because they incompletely describe the physical relationships among important watershed components (e.g., vegetation processes that link the atmosphere and different levels of soil, surface and groundwater interactions), are themselves the subject of research to determine their reliability.

Streamflow and other hydrologic variables are intimately responsive to atmospheric factors, especially precipitation, that drive a watershed’s hydrologic behavior. However, obtaining quality precipitation estimates is a formidable challenge, especially in the western U.S. where orographic effects produce large spatial variability and there is a scarcity of real-time precipitation gauge data and poor radar coverage. In principal, outputs from atmospheric models could serve as surrogates for observations, as well as providing forecasts of meteorological variables that can be used to drive hydrologic models. One issue in integrating atmospheric model output into hydrologic models for small watersheds (<1000 km\(^2\)) is that the
spatial resolution of atmospheric models is lower than the resolution of hydrologic models. For example, quantitative precipitation forecasts (QPFs) produced by some atmospheric models may cover several thousand square kilometers, but the hydrologic models used for predicting daily streamflows require precipitation to be downscaled to precipitation fields for watersheds covering only tens or hundreds of square kilometers. One approach to produce output consistent with the needs of hydrologic models is to use nested atmospheric models, whereby outputs from large scale but coarse resolution models are used as boundary conditions for models operating over smaller extent with higher resolution. However, the error characteristics of atmospheric model products (e.g., bias in precipitation and air temperature) also can have significant effects on subsequent streamflow forecasts. Bias corrections require knowledge of the climatologies (i.e., long-term distributions) of both modeled and observed variables.

With regard to mid- and long-range planning, an additional concern is that, as instrumental records have grown longer, they increasingly belie one of the fundamental assumptions behind most extant water resources management - stationarity. Stationary time series have time-invariant statistical characteristics (e.g., mean, variance), meaning that different parts of the historical record can be considered equally likely. Further, within the limits posed by sampling, statistics computed from stationary time series can be used to define a probability distribution that will also then faithfully represent expectations for the future (Salas, 1993). Yet long climate and hydrology time series often show trends (e.g., Baldwin and Lall, 1999; Olsen et al., 1999) or persistent regimes, i.e., periods characterized by distinctly different statistics (e.g., Angel and Huff, 1995; Quinn, 1981, 2002), with consequences for estimation of hydrologic risk (Olsen et al., 1998). Observed regimes and trends can have multiple causes, including climatic changes, watershed and river transformations, and management impacts (e.g., irrigation return flows, trans-basin water diversions).

These issues enter into RiverWare applications directly through the use of naturalized flows, which are notoriously unreliable. For example, in assessments of water management options on the San Juan River in Colorado and New Mexico, the reliability of naturalized flows was considered to be affected by the inconsistent accounting of consumptive uses between irrigation and non-irrigation data, use of reservoir evaporation rates with no year-to-year variation, not including time lags in the accounting of return flows from irrigation to the river, errors in river gage readings that underestimated flows in critical
months, the lack of documentation of diversions that reduce river flows as well as subsequent adjustments to data used to compute naturalized flows.

3d. What kinds of observations could be useful in the near future?

RiverWare has tremendous flexibility in the kinds of observations that could be useful in hydrologic modeling and river system assessment. However, regardless of the type of observations used within RiverWare, from meteorology to naturalized flows, the issue of non-stationarity elevates the importance of maintaining a long record of observations.

Although meteorological uncertainty may be high for the periods addressed by streamflow forecasts, accurate estimates of the state of watershed conditions prior to the forecast period are important because they are used to initialize hydrologic model states, with significant consequences for forecast results. However, they can be difficult to measure, especially when streamflow forecasts must be made quickly, as in the case of flash flood forecasts. One option is to continuously update watershed states by running the hydrologic models continuously, using inputs from recent meteorological observations and/or atmospheric models. Regardless of the source of inputs, Westrick et al. [2002] found it essential to obtain observational estimates of initial conditions to keep streamflow forecasts realistic; storm-by-storm corrections of model biases determined over extended simulation periods were insufficient.

Recent experimental end-to-end forecasts of streamflow produced in a simulated operational setting [Wood et al., 2001] highlighted the critical role of quality estimates of spring and summer soil moisture used to initialize hydrologic model states for the eastern U.S.

Where streamflows may be largely comprised of snowmelt runoff, quality estimates of snow conditions are important. The importance of reducing errors in the timing and magnitude of snowmelt runoff are especially acute in regions where a large percentage of annual water supplies derive from snowmelt runoff, snowmelt impacts are highly non-linear with increasing deviation from long-term average supplies, and reservoir storage is smaller than interannual variation of water supplies. However, resources for on-site monitoring of snow conditions have diminished rather than grown, relative to the increasing costs of errors in hydrologic forecasts [Davis and Pangburn, 1999]. Research activities of the NWS National Office of Hydrology Remote Sensing Center (NOHRSC) have long been directed at improving...
estimates of snowpack conditions through aerial and satellite remote sensing [Carroll, 1985]. However, the cost of aerial flights prohibits routine use [T. Carroll, NOHRSC, personal communication, 1999], while satellite estimates have qualitative limitations (e.g., not considering fractional snow coverage over large regions) and have not found broad use operationally, except on the Canadian prairies where snow water volumes are based on passive microwave satellite data [Walker and Goodison, 1993].

4. Uncertainty

Multiple techniques exist to more accurately represent the uncertainty inherent in understanding and predicting potential hydroclimatic variability. Stochastic hydrology techniques use various forms of autoregressive models to generate multiple synthetic streamflow time series with statistical characteristics matching available observations. For example, in estimating the risk of low flows for the Sacramento River Basin in California, the Bureau of Reclamation (Frevert et al., 1989) generated twenty 1000-year streamflow time series matching selected statistics of observed flows (adjusted to compensate for water management impacts on natural flows); the non-exceedance probabilities of low flows were computed by counting the occurrences of low flows within 1- through 10-year intervals for all twenty 1000-year sequences. The U.S. Army Corps of Engineers (1992) used a similar approach to estimate flood magnitudes with return periods exceeding 1000 years, using Monte Carlo sampling from within the 95% confidence limits of a Log Pearson III distribution developed by synthesizing multiple streamflow time series.

The ability to automatically execute many model runs within RiverWare, including accessing data from external sources and exporting model results, facilitates using stochastic hydrology approaches for representing uncertainty. For example, Carron et al. (2006) demonstrated RiverWare’s ability to identify and quantify significant sources of uncertainty in projecting river and reservoir conditions, using a first-order, second-moment (FOSM) algorithm that is computationally more efficient than more traditional Monte Carlo approaches. The FOSM processes uncertainties in inputs and models to provide estimates of uncertainty in model results that can be used directly within a risk management decision framework. The case study presented by Carron et al. (2006) evaluated the uncertainties associated with meeting goals for reservoir water levels beneficial for recovering endangered fish species within the lower Colorado River.
With regard to RiverWare applications concerned with mid-range planning and use of hydrologic forecasts, at the core of any forecasting system is the predictive model, whether a simple statistical relationship or a complex dynamic numerical model. Advances in hydrologic modeling have been notable, especially those associated with the proper identification of a predictive model and its parameters [e.g., Duan et al., 2002] and the development of models that consider the spatially distributed characteristics of watersheds rather than treating entire basins as a single point [Grayson and Bloschl, 2000]. Conceptual rainfall-runoff models offer some advantages over statistical techniques in support of long-range planning for water resources management; these models represent, with varying levels of complexity, the transformation of rainfall and other meteorological forcing variables (e.g., air temperature, humidities) to watershed runoff and streamflow, including accounting for hydrologic storage conditions (e.g., snowpack water storage, soil moisture, groundwater storage). These models can be used to assess the impacts and implications of various climate scenarios, by using historic meteorological time series as input, generating hydrologic time series, and then using those hydrologic scenarios as input to hydraulic routing and water management models. This approach enables consideration of current landscape and river channel conditions, which may be quite different than embodied in early instrumental records, and which can dramatically alter a watershed’s hydrologic behavior (Vorosmarty et al., 2004). Further, the use of multiple input time series or system parameterizations enables a probabilistic assessment of an ensemble of scenarios.

5. Global change information and RiverWare

5a. To what extent does the decision support tool rely upon global change information?

RiverWare itself does not rely on global change information. Rather, the specific application of RiverWare in the context of mid- or long-range planning for a specific river basin will reflect whether decisions may rely on global change information.

In the context of mid-range planning of reservoir operations to ensure delivery of water allocations and maintenance of instream flows, characterization and projections of interannual and decadal-scale climate variability are important. Great strides have been made in monitoring, understanding, and predicting interannual climate phenomena such as the El Nino-Southern Oscillation (ENSO). This
improved understanding has resulted in long-lead (up to about a year) climate forecast capabilities that can
be exploited in streamflow forecasting. Techniques have been developed to directly incorporate variable
climate states into probabilistic streamflow forecast models based on linear discriminant analysis (LDA)
with various ENSO indicators, e.g., the Southern Oscillation Index (SOI), Wright sea surface temperatures
(SSTs) [Peichota and Dracup, 1999; Piechota et al., 2001]. Recent improved understanding of decadal-scale
climatic variability also has contributed to improved interannual hydroclimatic forecast capabilities. For
example, the Pacific Decadal Oscillation (PDO) [Mantua et al., 1997] has been shown to modulate ENSO-
related climate signals in the U.S. West. Experimental streamflow forecasting systems for the Pacific
Northwest have been developed based on long-range forecasts of both PDO and ENSO [Hamlet and
Lettenmaier, 1999].

While many current water management decision processes use single-value deterministics
approaches, probabilistic forecasts enable quantitative estimation of the inevitable uncertainties associated
with weather and climate systems, which are inherently chaotic [Hansen et al., 1997]. From a decision
maker’s perspective, probabilistic forecasts are more informative because they explicitly communicate
uncertainty, and more useful because they can be directly incorporated into risk-based calculations (e.g.,
eXpected consequences). Probabilistic forecasts of water supplies can be created by overlaying a single
prediction with a normal distribution of estimation error determined at the time of calibration of the
forecast equations [Garen, 1992]. However, to account for future meteorological uncertainty, new
developments have focused on ensembles, whereby multiple possible futures (each termed an ensemble
trace) are generated; statistical analysis of the ensemble distribution then provides the basis for a
probabilistic forecast.

The potential impacts of climate change on water resources, and their implications for
management, have been central topics of concern in many assessments (e.g., EPA, 1989; IPCC, 1995,
Estimates of prospective impacts of climate change on precipitation have been mixed, leading, in many
cases, to increasing uncertainty about the reliability of future water supplies. However, where snow
provides a large fraction of annual water supplies, prospective temperature increases dominate hydrologic
impacts, leading to stresses on water resources and increased hydrologic risk. Higher temperatures
effectively shift the timing of the release of water stored in the snowpack ‘reservoir’ to earlier in the year, reducing supplies in summer when demands are greatest, while also increasing the risk of floods due to rain-on-snow events. While not using RiverWare, several river basin studies have assessed the risks of higher temperatures on water supplies and management challenges (Lee et al., 1994; Lee et al., 1997; Sousounis et al., 2000; Lofgren et al., 2002; Hamlet and Lettenmaier, 1999; Lettenmaier et al., 1999; Saunders and Lewis, 2003; Christensen, et. al, 2004; Payne et. al, 2004; VanRheenan et. al, 2004).

5b. How could RiverWare specifically support climate-related management decision making among US government agencies?

Decision makers increasingly recognize that climate is an important source of uncertainty and potential vulnerability in long-term planning for the sustainability of water resources (Hartmann, 2005). Many communities have faced multiple events, such as major floods and drought, earlier thought to have low probabilities of occurrence (e.g., National Research Council [NRC], 1995). Further, the evolving understanding of earth dynamics has changed perspectives about potential climate variability. Extremely long time-series of paleoclimatological indicators (e.g., Ezurkwal, 2005) have made clear that climate and water supplies in many regions are more variable than indicated by instrumental records alone, with periods of extreme drought or wetness lasting from several years to several decades, albeit often interrupted by more typical conditions. As well, climate is now recognized as a chaotic process, shifting among distinct regimes with statistically significant differences in average conditions and variability (Hansen et al., 1997). Myriad studies related to global warming are becoming more confident in their conclusions that the future portends statistically significant changes in hydroclimatic averages and variability.

With the appropriate investment in site licenses, training of personnel, implementation for a specific river system, and assessment efforts, RiverWare is capable of supporting climate-related water resources management decisions by US agencies. However, technology alone is insufficient to resolve conflicts among competing water uses. Early in the development of RiverWare, Reistema (1996) investigated its potential role, as a decision support tool, within complex negotiations between hydroelectric, agricultural, and flood control interests. Results indicated that while decision support tools can help identify policies that can satisfy specific management requirements and constraints, as well as
expanding the range of policy options considered, they are of limited value in helping decision makers understand interactions within the river system. Further, the burdens of direct use by decision makers of a decision support tool that embodies a complex system are significant; a more useful approach is to have specialists support decision makers by making model runs and presenting the results in an iterative manner. This is the approach used by the Bureau of Reclamation in the application of RiverWare to support interstate negotiations concerning the sharing of Colorado River water supply shortages during times of drought (Jerla, 2005).

From the perspective of mid-range water management issues, the use of forecasts within RiverWare applications constitutes an important pathway for supporting climate-related decision making. Each time a prediction is made, science must address and communicate the strengths and limitations of current understanding. Each time a decision is made, managers must confront their understanding of scientific information and forecast products. Further, each prediction and decision provides opportunities for interaction between scientists and decision makers, and for making clear the importance of investments in scientific research. Perceptions of poor forecast quality are a significant barrier to more effective use of hydroclimatic forecasts [Changnon, 1990; Pagano et al., 2001, 2002; Rayner et al., 2001]. However, recent advances in modeling and predictive capabilities naturally lead to speculation that hydroclimatic forecasts can be used to improve the operation of water resource systems. In the U.S., the Pacific Northwest, California, and the Southwest are strong candidates for the use of long-lead forecasts because ENSO and PDO signals are particularly strong in these regions and each region’s water supplies are closely tied to accumulation of winter snowfall, amplifying the impacts of climatic variability.

Changnon [2000], Rayner et al. [2001], and Pagano et al. [2002] found that improved climate prediction capabilities are initially incorporated into water management decisions informally, using subjective, ad hoc procedures on the initiative of individual water managers. While improvised, those decisions are not necessarily insignificant. For example, the Salt River Project, among the largest water management agencies in the Colorado River Basin and primary supplier to the Phoenix metropolitan area, decided in August 1997 to substitute groundwater withdrawals with reservoir releases, expecting increased surface runoff during a wet winter related to El Nino. With that decision, they risked losses exceeding $4 million in an attempt to realize benefits of $1 million [Pagano et al., 2002]. Because these informal
processes are based in part on confidence in the predictions, overconfidence in forecasts can be even more problematic than lack of confidence, as a single incorrect forecast that provokes costly shifts in operations can devastate user confidence in subsequent forecasts [e.g., Glantz, 1982].

The lack of verification of hydroclimatic forecasts is a significant barrier to their application in water management (Hartmann et al., 2002a; Pagano et al., 2002). Information on forecast performance has rarely been available to, and framed for, decision makers, although hydrologic forecasts are reviewed annually by the issuing agencies in the U.S (Hartmann et al., 2002b). Hydrologic forecast verification is an expanding area of research (Franz et al., 2003; Hartmann et al., 2003; Pagano et al., 2004) but much work remains and could benefit from approaches developed within the meteorological community (Welles et al., 2007). Because uncertainty exists in all phases of the forecast process, forecast systems designed to support risk-based decision making need to explicitly quantify and communicate uncertainties, from the entire forecast system and from each component source, including model parameterization and initialization, meteorological forecast uncertainty at the multiple spatial and temporal scales at which they are issued, adjustment of meteorological forecasts (e.g., though downscaling) to make them usable for hydrologic models, implementation of ensemble techniques, and verification of hydrologic forecasts. RiverWare is flexible enough to incorporate quantitative forecast uncertainty, if the specific application incorporates risk management, e.g., weighting decision outcomes by their likelihood of occurrence.

Cognitively, climate change information is difficult to integrate into water resources management. First, within the water resources engineering community, the stationarity assumption is a fundamental element of professional training; current hydrologic analysis techniques used in practice are seen as generally sufficient (e.g., Matalas, 1997; Lins and Stakhiv, 1998), especially in the context of slow policy and institutional evolution (Stakiv, 2003). Second, the century timescales of climate change exceed typical planning and infrastructure design horizons and are remote from human experience. Third, even individuals trying to stay up-to-date can face confusion in conceptually melding the burgeoning climate change impacts literature. Assessments are often repeated as general circulation and hydrologic model formulations advance, or as new models become available throughout the research community. Further, assessments can
employ a variety of techniques for downscaling; transposition techniques (e.g., Crole et al., 1998) are more intuitive than the often mathematically complex statistical and dynamical downscaling techniques (e.g., Clark et al., 1999; Westrick and Mass, 2001; Wood et al., 2002; Benestad, 2004). The multiplicity of scenarios and vague attribution of their prospects for occurrence, which depend so strongly on feedbacks among social, economic, political, technological, and physical processes, further complicate conceptual integration of climate change impacts assessment results in a practical water management context. For decision makers, a critical issue concerns the extent to which the various scenarios reflect the actual uncertainty of the relevant risks versus the uncertainty due to methodological approaches and biases in underlying models.

Global climate models (GCMs) and their downscaled corollaries provide one unique perspective on long-term trends related to global change. Another unique perspective is provided by tree-ring reconstructions of paleo-streamflows, which, for example, indicate that droughts over the past several hundred years have been more intense, regionally extensive, and persistent than those reflected in the instrumental record (Woodhouse and Lukas, 2006). Decision makers have expressed interest in combining the perspectives of paleoclimatological information and GCMs. While some studies have linked instrumental records to paleoclimatological information (e.g., Prairie, 2006) and others with GCMs (e.g., Christensen and Lettemaier, 2004), few link all three (an exception is Smith et al., 2007).

Whether using long-term forecasts, global change projections from GCMs, or paleoclimatological information to estimate potential climate variability over the long-term, decision makers that traditionally rely on statistical analysis of historical data can be reluctant to shift operations; these tendencies can be countered, however, by using the end-to-end tools in design studies [Lee, 1999, Davis and Pangburn, 1999]. By providing a practical means for connecting a variety of hydroclimatological conditions, the interconnected details of river basins with significant infrastructure, and water management policies and regulations, RiverWare constitutes an end-to-end tool in support of complex water management decisions.
Appendix A

References by Chapter

Chapter 1 References – Decision Support for Agricultural Efficiency:


Chapter 2 References – Decision Support for Air Quality:


6/15/2007


Delworth et al., 2006: GFDL’s CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics, JOURNAL OF CLIMATE—SPECIAL SECTION, VOLUME 19, 643-674


IPCC (Intergovernmental Panel on Climate Change), 2000: Emissions Scenarios, Cambridge University Press, Cambridge, UK

IPCC (Intergovernmental Panel on Climate Change), 2001: The Scientific Basis, Cambridge University Press, Cambridge, UK


Schwartz J. P. Michaels and R. E. Davis (2005), Ozone; unrealistic scenarios, Environ. Health Perspect., 113, No 2, p A 86


Tang, Y., et al., 2007: Influence of lateral and top boundary conditions on regional air quality prediction: A 
multiscale study coupling regional and global chemical transport models, J. Geophys. Res., 112, D10S18, 

Impacts of Global Climate Change and Emissions on Regional Ozone and Fine Particulate Matter 

Tarasick, D. W. et al. (2007), Comparison of Canadian air quality forecast models with tropospheric ozone 
profile measurements above midlatitude North America during the IONS/ICARTT campaign: Evidence for 

Tong, D.Q. and D.L. Mauzerall, 2006: Spatial Variability of Summertime Tropospheric Ozone over the 
Continental United States: Implications of an evaluation of the CMAQ model, Atmospheric Environment, 
40, 3041-3056.

Woo, J. H., et al., 2006: Development of Mid-Century Anthropogenic Emissions Inventory in Support of 
Regional Air Quality Modeling under Influence of Climate Change, paper presented at 15th Annual 
Emission Inventory Conference Reinventing Inventories New Ideas in New Orleans New Orleans, 
Louisiana, May 16-18 (http://www.epa.gov/ttn/chief/conference/ei15/session4/woo2.pdf)

Zhang, F., N. Bei, J. W. Nielsen-Gammon, G. Li, R. Zhang, A. Stuart, and A. Aksoy (2007), Impacts of 
meteorological uncertainties on ozone pollution predictability estimated through meteorological and 
Chapter 3 References – Decision Support for Energy Management:


Chapter 4 References – Decision Support for Public Health


Chapter 5 References – Water Management


Magee, T. and E. Zagona (2005), Hydropower Simulation and Optimization with RiverWare. Proceedings of Waterpower XIV, July.


Rayner, S., D. Lach, H. Ingram, and M. Houck (2001) Why water resource managers don't use climate forecasts, International Research Institute on Climate Prediction, Palisades, N. Y.


APPENDIX B

List of Figures by Chapter

Chapter 1:

- **Figure 2**: The PECAD Decision Support System: Data Sources and Decision Support Tools
- **Figure 2**: The PECAD Decision Support System: Earth System Models, Earth Observations, Decision Support Tools, and Outputs
- **Figure 3**: The PECAD Decision Support System: The Role of Convergence of Evidence Analysis
- **Figure 4**: The PECAD Decision Support System: Information Sources for the Convergence of Evidence Analysis

Chapter 2:

- **Figure 1**: Configuration of CMAQ-based Decision Support System for climate change impact study

Chapter 3:

- **Figure 1**: Example of HOMER output graphic.

Chapter 4:
Figure 1: Relationship between the occurrence of black-legged tick presence at a site and minimum temperature (top) and evaluation of model (bottom).

**Top Panel:** Log odds plot for relationship between *I. Scapularis* population maintenance and minimum temperature (T).

**Bottom Panel:** ROC Plot describing the accuracy of the autologistic model.

Figure 2: Forecast geographic distribution of the black-legged tick vector east of the 100th meridian in the United States for DSSPL.

Figure 3: Forecast change in black-legged tick distribution in Eastern and Central North America under climate change scenarios using DSSPL.

Appendix C
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>ACD</td>
<td>Atmospheric Chemistry Division</td>
</tr>
<tr>
<td>AERONET</td>
<td>Aerosol RObotic NETwork</td>
</tr>
<tr>
<td>AgRISTARS</td>
<td>Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing</td>
</tr>
<tr>
<td>AI</td>
<td>Aerosol Index</td>
</tr>
<tr>
<td>AOD</td>
<td>Aerosol Optical Depths</td>
</tr>
<tr>
<td>ASOS</td>
<td>Automated Surface Observation Stations</td>
</tr>
<tr>
<td>ATSR</td>
<td>Along Track Scanning Radiometer</td>
</tr>
<tr>
<td>AVHRR</td>
<td>Advanced Very High Resolution Radiometer</td>
</tr>
<tr>
<td>AWN</td>
<td>Automated Weather Network</td>
</tr>
<tr>
<td>BC</td>
<td>Boundary Conditions</td>
</tr>
<tr>
<td>BELD3</td>
<td>Biogenic Emissions Land Use Database version 3</td>
</tr>
<tr>
<td>CAAA</td>
<td>Clean Air Act and its Amendments</td>
</tr>
<tr>
<td>CAM</td>
<td>Community Atmosphere Model</td>
</tr>
<tr>
<td>CAMx</td>
<td>Comprehensive Air quality Model with Extensions</td>
</tr>
<tr>
<td>CBv</td>
<td>Carbon Bond V</td>
</tr>
<tr>
<td>CCSP</td>
<td>Climate Change Science Program</td>
</tr>
<tr>
<td>CDC</td>
<td>Disease Control and Prevention</td>
</tr>
<tr>
<td>CEMPI</td>
<td>Center for Environmental Modeling for Policy Development</td>
</tr>
<tr>
<td>CENR</td>
<td>Committee on Environment and Natural Resources Research</td>
</tr>
<tr>
<td>CH4</td>
<td>Methane</td>
</tr>
<tr>
<td>CM2</td>
<td>Climate Model 2</td>
</tr>
<tr>
<td>CMAQ</td>
<td>Community Multiscale Air Quality</td>
</tr>
<tr>
<td>CMAS</td>
<td>Community Modeling and Analysis System</td>
</tr>
<tr>
<td>CNES</td>
<td>Centre National d’Etudes Spatiales</td>
</tr>
</tbody>
</table>
CO$_2$  Carbon Dioxide
CONUS  Continental United States
CTM  Chemistry Transport Modeling
DDSPL  Decision Support System to Prevent Lyme disease
DEM  Digital Elevation Models
DG  Distributed generation
DLR  German Aerospace Center (DLR) (German: Deutsches Zentrum für Luft- und Raumfahrt e.V.)
DMSP  Defense Meteorological Satellite Program
DSSs  Decision Support Systems
DSTs  Decision Support Tools
ECMWF  European Centre for Medium-Range Weather Forecasts
EPA  Environmental Protection Agency
ESMP  Earth System Modeling Framework
ESRI  Environmental Science and Research Institute
ESRL  Earth Systems Research Laboratory
ESSL  Earth and Sun Systems Laboratory
EUMETSAT  European Organization for the Exploitation of Meteorological Satellites
FAS  Foreign Agricultural Service
GACP  Global Aerosol Climatology Project
GADS  Global Aerosol Dataset
GCM  Global Climate Model
GCTM  Global Chemistry Transport Models
GEO  Group on Earth Observations
GEOS  Goddard Earth Observing System
GEWEX  Global Energy and Water Experiment
GFDL  Geophysical Fluid Dynamics Laboratory
GhTOC  Hourly Total Ozone Column
GIS  geographic information system
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GISS</td>
<td>Goddard Institute for Space Studies</td>
</tr>
<tr>
<td>GLCC</td>
<td>Global Land Cover Characterization</td>
</tr>
<tr>
<td>GMAO</td>
<td>Global Modeling and Assimilation Office</td>
</tr>
<tr>
<td>GOCAT</td>
<td>Global Ozone Chemistry Aerosol Transport</td>
</tr>
<tr>
<td>GOES</td>
<td>Geostationary Environmental Operational Satellite</td>
</tr>
<tr>
<td>GOME</td>
<td>Global Ozone Monitoring Experiment</td>
</tr>
<tr>
<td>GsT</td>
<td>Geospatial Toolkit</td>
</tr>
<tr>
<td>GTCM</td>
<td>Global Tropospheric Chemistry Model</td>
</tr>
<tr>
<td>GTS</td>
<td>Global Telecommunications System</td>
</tr>
<tr>
<td>HMS</td>
<td>Hazard Mapping System</td>
</tr>
<tr>
<td>HOMER</td>
<td>Hybrid Optimization Model for Electric Renewables</td>
</tr>
<tr>
<td>IGOL</td>
<td>Integrated Global Observations of Land</td>
</tr>
<tr>
<td>INPE</td>
<td>Brazilian Spatial Institute</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>ISH</td>
<td>Integrated Surface Hourly</td>
</tr>
<tr>
<td>KAMM</td>
<td>Karlsruhe Atmospheric Mesoscale Model</td>
</tr>
<tr>
<td>kw</td>
<td>Kilowat</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>LACIE</td>
<td>Large Area Crop Inventory Experiment</td>
</tr>
<tr>
<td>LULC</td>
<td>Land Use and Land Cover</td>
</tr>
<tr>
<td>MATCH</td>
<td>Model of Atmospheric Transport and Chemistry</td>
</tr>
<tr>
<td>MCIP</td>
<td>Meteorology-Chemistry Interface Processor</td>
</tr>
<tr>
<td>MIST</td>
<td>Multi-Angle Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MM5</td>
<td>Mesoscale Model Version 5</td>
</tr>
<tr>
<td>MODIS</td>
<td>Moderate Resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MOZART</td>
<td>Model of Ozone and Related Chemical Tracers</td>
</tr>
<tr>
<td>N2O</td>
<td>Nitrous oxide</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------------------------------</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>SSE</td>
<td>Surface meteorology and Solar Energy</td>
</tr>
<tr>
<td>USGS</td>
<td>US Geological Survey</td>
</tr>
<tr>
<td>NCAR</td>
<td>National Center for Atmospheric Research</td>
</tr>
<tr>
<td>NCAR-NCEP</td>
<td>National Center for Atmospheric Research-National Centers for Environmental Protection</td>
</tr>
<tr>
<td>NCDC</td>
<td>National Climatic Data Center</td>
</tr>
<tr>
<td>NCEP</td>
<td>National Centers for Environmental Prediction</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>NREL</td>
<td>National Renewable Energy Laboratory</td>
</tr>
<tr>
<td>NSTC</td>
<td>National Science and Technology Council</td>
</tr>
<tr>
<td>OCO</td>
<td>Orbiting Carbon Observatory</td>
</tr>
<tr>
<td>OMI</td>
<td>Ozone Monitoring Instrument</td>
</tr>
<tr>
<td>AOT</td>
<td>aerosol optical thickness</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Ozone Content</td>
</tr>
<tr>
<td>P</td>
<td>Wind Power Density</td>
</tr>
<tr>
<td>PECAD</td>
<td>Production Estimate and Crop Assessment Division</td>
</tr>
<tr>
<td>CADRE</td>
<td>Crop Condition Data Retrieval and Evaluation system</td>
</tr>
<tr>
<td>PNNL</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>RCM</td>
<td>Regional Climate Model</td>
</tr>
<tr>
<td>ReGAP</td>
<td>Regional Gap Analysis Program</td>
</tr>
<tr>
<td>RPOs</td>
<td>Regional Program Organizations</td>
</tr>
<tr>
<td>SAP</td>
<td>Synthesis and Assessment Product</td>
</tr>
<tr>
<td>SHEDS</td>
<td>Stochastic Human Exposure and Dose Simulation</td>
</tr>
<tr>
<td>SIP</td>
<td>State Implementation Plans</td>
</tr>
<tr>
<td>SPOT</td>
<td>Systeme Pour L’Observation de la Terre</td>
</tr>
</tbody>
</table>
SRTM  Shuttle Radar Topographic Mission
SSE  Surface meteorology and Solar Energy
SSM/I  Special Sensor Microwave/Imager
SSMR  Scanning Multichannel Microwave Radiometer
STAR  Science to Achieve Results
SWERA  Solar and Wind Energy Resource Assessment
TES  Tropospheric Emission Spectrometer
TOMS  Total Ozone Mapping Spectrometer
TRI,  Total Risk Integrated Methodology
U.S.  United States
UIUC  Unknown Sent email to Daewon
UNC  University of North Carolina at Chapel Hill
UNEP  United Nations Environment Programme
USDA  Department of Agriculture
EROS  Earth Resources Observation Systems
USWRP  United States Weather Research Program
V  Wind Speed
WAStP  Wind Atlas Analysis and Application Program
WRAMS  Wind Resource Assessment Mapping System
WRDC  World Radiation Data Centre
WRF  Weather Research and Forecasting
3203
3204