WEIGHTLESS WONDER – Reduced Gravity Flight

Instructional Objectives
Students will
- use trigonometric ratios to find vertical and horizontal components of a velocity vector;
- derive a formula describing height of a parabola in terms of time;
- determine vertical and horizontal displacement of trajectory motion; and
- analyze data to derive a solution to a real life problem.

Degree of Difficulty
This problem is a straightforward application of parabolic motion.
- For the average AP Physics student, the problem may be moderately difficult.

Background
This problem is part of a series of problems that apply math and science principles to human space exploration at NASA.

Exploration provides the foundation of our knowledge, technology, resources, and inspiration. It seeks answers to fundamental questions about our existence, responds to recent discoveries and puts in place revolutionary techniques and capabilities to inspire our nation, the world, and the next generation. Through NASA, we touch the unknown, we learn and we understand. As we take our first steps toward sustaining a human presence in the solar system, we can look forward to far-off visions of the past becoming realities of the future.

In our quest to explore, humans will have to adapt to functioning in a variety of gravitational environments. Earth, Moon, Mars, and space all have different gravitational characteristics. Earth’s gravitational force is referred to as one Earth gravity, or 1g. Since the Moon has less mass than the Earth, its gravitational force is only one sixth that of Earth, or 0.17g. The gravitational force on Mars is equivalent to about 38% of Earth’s gravity, or 0.38g. The gravitational force in space is called microgravity and is very close to zero-g.

When astronauts are in orbit, either in the space shuttle or on the International Space Station (ISS), Earth’s gravitational force is still

*AP is a trademark owned by the College Board, which was not involved in the production of, and does not endorse, this product.
working on them. However, astronauts maintain a feeling of weightlessness, since both the vehicle and crew members are in a constant state of free-fall. Even though they are falling towards the Earth, they are traveling fast enough around the Earth to stay in orbit. During orbit, the gravitational force on the astronauts relative to the vehicle is close to zero-g.

The C-9 jet is one of the tools utilized by NASA to simulate the gravity, or reduced gravity, astronauts feel once they leave Earth (Figure 1). The C-9 jet flies a special parabolic pattern that creates several brief periods of reduced gravity. A typical NASA C-9 flight travels over the Gulf of Mexico, lasts about two hours, and completes between 40 and 60 parabolas. These reduced gravity flights are performed so astronauts, as well as researchers and their experiments, can experience the gravitational forces of Moon and Mars and the microgravity of space.

By using the C-9 jet as a reduced gravity research laboratory, astronauts can simulate different stages of spaceflight. This can allow crew members to practice what might occur during a real mission. These reduced gravity flights provide the capability for the development and verification of space hardware, scientific experiments, and other types of research (Figure 2). NASA scientists can also use these flights for crew training, including exercising in reduced gravity, administering medical care, performing experiments, and many other aspects of spaceflight that will be necessary for an exploration mission. A flight on the C-9 jet is the next best thing to blasting into orbit!

AP Course Topics

Newtonian Mechanics

- Kinematics:
 - Motion in two dimensions, including projectile motion.

NSES Science Standards

Physical Science

Knowledge of Motion and Force

- Laws of motion are used to calculate precisely the effects of forces on the motion of objects.
Science and Technology

Abilities of Technological Design
- Implement a proposed solution.
- Evaluate the solution and its consequences.
- Communicate the problem, process, and solution.

History and Nature of Science

Science as a Human Endeavour
- Individuals and teams have contributed and will continue to contribute to the scientific enterprise.

Nature of Scientific Knowledge
- Scientific explanations must meet certain criteria. First and foremost, they must be consistent with experimental and observational evidence about nature, and must make accurate predictions, when appropriate, about systems being studied.

Problem

To prepare for an upcoming mission, an astronaut participated in a C-9 flight simulating microgravity. The pilot flew out over the Gulf of Mexico, dove down to increase to a maximum speed then climbed up until the nose was at a 45° angle with the ground. At this point the velocity of the plane was 444 kilometers per hour (about 275 mph) and the altitude was 9,144 meters (about 30,000 ft). To go into a parabolic maneuver, the pilot then cut the thrust of the engine letting the nose of the plane continue to rise then come back down at a -45° angle with the ground. Ending the parabolic maneuver, the pilot throttled the engine back up and began another dive to prepare for the next parabola. The pilot completed 50 parabolas during the 2 hour flight.

Figure 3 shows the movement of the plane during a typical flight. The parabolic maneuver, where microgravity is felt, is highlighted.

![Figure 3: A typical microgravity maneuver. (not to scale)](image-url)
Note: Acceleration due to gravity is approximately -9.8 m/s². For this problem we will be ignoring other influences such as air resistance.

Round all answers to three decimal places.

A. Find the initial and final vertical and horizontal velocities during one parabolic maneuver.

B. Find the time elapsed, in seconds, of one parabolic maneuver.

C. Find the maximum altitude, in meters, the plane reached. For students in Physics C, verify the maximum point using calculus.

D. Find the horizontal displacement, in meters, of the plane during one parabolic maneuver.

E. What percentage of the total flight was spent in microgravity?

F. How many parabolas would the pilot need to complete in order for the astronaut to have had at least 15% of his flight in microgravity?

Solution Key (One Approach)

A. Find the initial and final vertical and horizontal velocities during one parabolic maneuver.

Step 1: Convert initial velocity to meters per second.

\[
\begin{align*}
444 \text{ km} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1 \text{ hr}}{3600 \text{ s}} &= 123.333 \text{ m/s} \\
\end{align*}
\]

Step 2: Find the initial vertical and horizontal velocities.

Initial vertical velocity:

\[
V_{iy} = V_i \sin \theta \\
V_{iy} = (123.333 \text{ m/s}) \cdot (\sin 45^\circ) = 87.210 \text{ m/s}
\]

Initial horizontal velocity:

\[
V_{ix} = V_i \cos \theta \\
V_{ix} = (123.333 \text{ m/s}) \cdot (\cos 45^\circ) = 87.210 \text{ m/s}
\]

Step 3: Find the final vertical and horizontal velocities.

The horizontal velocity remains constant thus, the final horizontal velocity:

\[
V_{fx} = 87.210 \text{ m/s}
\]

The final vertical velocity is found using the formula:

\[
V_{fy} = V_{fx} \tan \theta \\
V_{fy} = (87.210 \text{ m/s}) \cdot (\tan(-45^\circ)) = -87.210 \text{ m/s}
\]

B. Find the time elapsed, in seconds, of one parabolic maneuver.

Using the formula for final vertical velocity, \(V_{fy} = V_{fy} + at \), substitute your values in
for final and initial vertical velocities and the acceleration due to gravity to solve for time.

\[-87.210 \text{ m/s} = (87.210 \text{ m/s}) + (−9.8 \text{ m/s}^2)t\]
\[t = 17.798 \text{ s}\]

C. Find the maximum altitude, in meters, the plane reached. For students in Physics C, verify the maximum point using calculus.

The vertical displacement is given by the formula

\[y = V_{iy}t + \frac{1}{2}at^2 + y_0.\]

Substituting in velocity, acceleration, and initial altitude into the equation gives the quadratic equation:

\[y = -4.9t^2 + 87.2t + 9144\]

To find the maximum altitude, find where the vertical velocity equals zero.

\[V_{fy} = V_{iy} + at\]
\[V_{fy} = 87.210 \text{ m/s} + (−9.8 \text{ m/s}^2)t\]

Substitute 0 in for the final vertical velocity and solve for \(t\).

\[0 = 87.210 \text{ m/s} + (−9.8 \text{ m/s}^2)t\]
\[t = 8.899 \text{ s}\]

Substituting 8.899 into our altitude equation gives us the maximum altitude:

\[y = -4.9(8.899)^2 + 87.210(8.899) + 9144\]
\[y = 9532.040 \text{ m}\]

To verify the maximum altitude using calculus the students should find where the derivative of the altitude function is 0.

Our altitude function is

\[y = -4.9t^2 + 87.210t + 9144.\]

\[\frac{dy}{dt} = -9.8t + 87.210\]
\[0 = -9.8t + 87.210\]
\[t = 8.899 \text{ s}\]

Now substitute 8.899 into the altitude function and solve for \(y\).

\[y = -4.9(8.899)^2 + 87.210(8.899) + 9144\]
\[y = 9532.04 \text{ m}\]

D. Find the horizontal displacement, in meters, of the plane during one parabolic maneuver.

Since horizontal velocity was constant, our equation is \(x = 87.210t\).

Thus the horizontal displacement was:

\[x = (87.210 \text{ m/s}) \cdot (17.798 \text{ s})\]
\[x = 1552.164 \text{ m}\]
E. What percentage of the total flight was spent in microgravity?
Each parabola lasted 17.798 seconds and the pilot performed 50 parabolas. The total time in microgravity was $17.798 \cdot 50 = 889.9$ seconds. The trip lasted for two hours, which is 7200 seconds.

\[
\text{Percentage} = \frac{889.9}{7200} \cdot 100
\]

Percentage $= 12.360\%$

F. How many parabolas would the pilot need to complete in order for the astronaut to have had at least 15% of his flight in microgravity?
15% of 7200 seconds is 1080 seconds.

\[
\frac{1080}{17.798} = 60.681 \text{ parabolas}
\]

Thus the pilot would have needed to complete 61 parabolas.

Scoring Guide
Suggested 14-15 points total to be given.

<table>
<thead>
<tr>
<th>Question</th>
<th>Distribution of points</th>
</tr>
</thead>
</table>
| A 5 points | 1 point for correct conversion of initial velocity to meters per seconds.
1 point for correct process used to find initial vertical velocity
1 point for correct process used to find initial horizontal velocity
1 point for recognizing horizontal velocity remains constant
1 point for correct process used to find final vertical velocity |
| B 2 points | 1 point for use of formula for final vertical velocity
1 point for substitution and process used to solve for time |
| C 4 - 5 points | 1 point for correct use of vertical displacement formula
1 point for correct formula to find final velocity
1 point for correct process used to find time of maximum altitude
1 point for correct substitution to find maximum altitude
\text{Physics C} \quad 1 point for correct verification of maximum using calculus |
| D 1 point | 1 point for correct process in finding horizontal displacement |
| E 1 point | 1 point for correct substitution and process used to find percent |
| F 1 point | 1 point for correct substitution and process used to find the number of parabolas |
Contributors
Thanks to the subject matter experts for their contributions in developing this problem:

NASA Experts
NASA Johnson Space Center
- Dominic Del Rosso
- Test Director
- Reduced Gravity Office

Problem Development
NASA Langley Research Center
- Chris Giersch
- Communications and Education Lead
- Exploration and Flight Projects Directorate

NASA Johnson Space Center
Human Research Program Education and Outreach
- Natalee Lloyd
 - Educator, Secondary Mathematics
- Michael Madera
 - Educator, Secondary Biology
- Monica Trevathan
 - Education Specialist
- Traci Knight
 - Graphics Specialist

National Institute of Aerospace
- Norman “Storm” Robinson, III
 - Education Specialist