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National Aeronautics and Space Administration 

LUNAR SURFACE COMMUNICATIONS 








Grade Level
11-12 

Key Topic
Differentiation  

Degree of Difficulty
Calculus AB: Moderate 
Calculus BC: Moderate 

Teacher Prep Time 
15 minutes  

Problem Duration  
40-50 minutes 

Technology 
Graphing calculator

Materials 
Student Edition including: 
- Background handout 
- Problem worksheet
- Support diagrams 

--------------------------------

AP Course Topics  
Derivatives:
- Concept of the Derivative
- Derivative at a Point 
- Applications of      

Derivatives
- Computation of 

Derivatives

NCTM Principles and 
Standards  
- Algebra 
- Geometry 
- Problem Solving 
- Connections 

*AP is a trademark owned by the 
College Board, which was not 
involved in the production of, and 
does not endorse, this product.

Instructional Objectives 
Students will 

derive the formula for calculating the line of sight distance to a 
horizon tangent point;
derive the distance along a surface to a tangent point; and
use derivatives to find the rates of change of two or more 
variables that are changing with respect to distance. 

Degree of Difficulty 

This problem is challenging because students need to recall and apply 
mathematical concepts from Algebra I, Geometry, and Trigonometry. 

For the average AP Calculus AB/BC student the problem is 
moderately difficult.

Background 

This problem is part of a series of problems that apply math and science
to human space exploration at NASA. 

Exploration provides the foundation of our knowledge, technology, 
resources, and inspiration. It seeks answers to fundamental questions 
about our existence, responds to recent discoveries and puts in place 
revolutionary techniques and capabilities to inspire our nation, the world, 
and the next generation. Through NASA, we touch the unknown, we learn 
and we understand. As we take our first steps toward sustaining a human 
presence in the solar system, we can look forward to far-off visions of the 
past becoming realities of the future. 

Outpost concepts are now being designed and studied by engineers, 
scientists, and sociologists to facilitate long-duration human missions to 
the surface of the Moon or other planetary bodies (Figure 1). Such 
outposts will include habitat modules, laboratory modules, power 
systems, transportation, life support systems, and protection from the 
environment.  

These long-duration missions will also require robust and reliable 
communications. It will be important to maintain constant communications 
with Earth. Therefore, 24 hours per day/7 days per week coverage at the 
outpost could be a requirement. This will likely be accomplished by a
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combination of communication satellites in orbit around the planetary body and communication 
equipment on the surface. 

The habitat (Figure 1) on the surface will need video downlink capability to Earth. In addition to the 
communication requirements between the planetary surface and Earth, it will also be important to 
maintain constant communications between surface crew members, regardless of their distance from 
the outpost. 

Figure 1: Habitat, airlock, and vehicles (NASA concept)

Surface to surface communications involves communicating between astronauts, rovers, robots, 
habitats, power stations, and science experiments, as well as communication within the habitats. For 
surface-based communication systems, there is a line of sight limitation on rover communication with 
the habitat. Astronauts must have either the habitat or the rover in their line of sight to maintain 
communications with Earth. 

The communications system should be easily expandable. Future missions will not want to abandon 
existing equipment, but instead incorporate existing equipment into an expanding communications 
system. 

These plans give NASA a huge head start in getting to Mars. We will already have rockets capable of 
transporting heavy cargo, as well as a versatile crew capsule. An outpost within a few days travel from 
Earth would give us needed practice of "living off the land" away from our home planet, before making 
the longer trek to Mars. 

AP Course Topics 

Derivatives 
Concept of the derivative 

Derivative interpreted as an instantaneous rate of change
Derivative at a Point 

Tangent line to a curve at a point and local linear approximation 
Applications of derivatives 

Modeling rates of change, including related rates problems 
Interpretation of the derivative as a rate of change in varied applied contexts, 
including velocity, speed, and acceleration 

Computations of derivatives: 
Chain rule and implicit differentiation


o


o


o
o


o
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NCTM Principles and Standards 

Algebra
Understand patterns, relations, and functions.
Represent and analyze mathematical situations and structures using algebraic symbols.
Use mathematical models to represent and understand quantitative relationships.

Analyze change in various contexts.

Geometry 
Use visualization, spatial reasoning, and geometric modeling to solve problems. 

Problem Solving 
Build new mathematical knowledge through problem solving. 
Solve problems that arise in mathematics and in other contexts. 

Connections 
Understand how mathematical ideas interconnect and build on one another to produce a 
coherent whole. 














Problem 
When relying on surface to surface communication understanding line of sight is critical. Consequently, 
an important measurement in planetary exploration is the distance to the horizon. This depends on the 
diameter of the planet and the height of the observer above the surface. Geometry can determine the 
height of a transmission antenna required to insure proper reception within a specified distance. Use 
the diagram in Figure 2 to answer the following questions. 

s 
h 

a 
r 

r 

Figure 2: Problem Diagram of the Moon
NOTE: Diagram is exaggerated to show relationship and reference points. 
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A. If the radius of the Moon is given by r, and the height of the tower above the surface is given by 
h, use Figure 2 to derive the formula for the line of sight distance, s, to the horizon tangent point. 

B. In terms of r and h, derive the formula for the arc length, a, which is the distance along the moon 
to the point of tangency. 

C. On Earth, a radio station may have an antenna tower 50 meters (m) tall. What would be the 
reception distance s, to the nearest meter, if that same tower were on the Moon? The radius of 
the Moon is 1,738 kilometers (km). 

D. Graph the equation for the line of sight distance from question A over the interval 0, 60.  What 
happens as the antenna height increases? To the nearest meter, find the rate of change to the 
lunar line of sight with respect to the antenna height or ds/dh at h = 50 m.  In practical terms, 
what does this mean? 

E. Use local linear approximation to predict the distance for an antenna of 51 meters.  How does 
this compare to the actual calculation using your equation from question A?  Would local linear 
approximation be as accurate in predicting the distance for an antenna height of 11 meters?  
Explain your reasoning.  

F. What is the rate of change of the distance, a, along the lunar surface to the lunar tower at the 
line of sight position when h = 50 m? Express your answer as a whole number.

G. Under what conditions do the line of sight formula (question D) and the arc length formula 
(question E) give significantly different answers? When would you use the arc length formula on 
the Moon or on some other solar system body?

Solution Key (One Approach) 

A. If the radius of the Moon is given by r, and the height of the tower above the surface is given by 
h, use Figure 2 to derive the formula for the line of sight distance, s, to the horizon tangent point. 

Use the Pythagorean Theorem to solve for s. 

s 2  r 2  (r  h)2

s 2  (r  h)2  r 2

s 2  r 2  2rh  h2  r 2

s 2  2rh  h2

s  2rh  h2

B. In terms of r and h, derive the formula for the arc length, a, which is the distance along the moon 
to the point of tangency. 

Start with the equation for arc length. 

a  r

Remember,

r
cos 

r  h
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so,  
 r 

a  r cos1 
 r  h 

C. On Earth, a radio station may have an antenna tower 50 meters (m) tall. What would be the 
reception distance s, to the nearest meter, if that same tower were on the Moon? The radius of 
the Moon is 1,738 kilometers (km). 

Note:  You might want to discuss why rounding to the nearest meter would be sufficient 
here rather than rounding to three decimal places because of the magnitude.  Students 
might see that rounding to the nearest meter would be the same measure as rounding
km to three decimal places. 

h = 50 m  
r = 1,738 km or 1,738,000 m 

s  2rh  h2

s  2 1,738,000 50  502

s  13,183 m

Note:  Because the radius of the Moon is significantly greater than the height of the 

tower, you may simplify the equation s  2rh  h2  to s  2rh and arrive at the same 
answer. 

D. Graph the equation for the line of sight distance from question A over the interval 0, 60.  What 
happens as the antenna height increases? To the nearest meter, find the rate of change to the 
lunar line of sight with respect to the antenna height or ds/dh at h = 50 m.  In practical terms, 
what does this mean? 

Line of Sight 
Distance (m) 

Line of Sight Distance vs. Antenna Height
Height

Antenna Height (m) 
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The line of sight distance increases as the antenna height increases, but not at a 
constant rate. This rate decreases as the antenna height increases.

This particular example would be a good one for students to practice implicit 
differentiation to find the rate of change or the students could use the chain rule.  Using 
implicit differentiation gives the following: 

s 2  2rh  h2

ds
2s  2r  2h

dh
ds 2r  2h


dh 2s
ds r  h


dh s
ds r  h


dh 2rh  h2

When h = 50 meters, 

ds 1738000  50


dh 2(1738000)(50)  (50)2

ds m
 132

dh m

 In practical terms, this means that the line of sight distance is increasing by 132 meters 
for every meter of antenna height.

E. Use local linear approximation to predict the distance for an antenna of 51 meters.  How does 
this compare to the actual calculation using your equation from questionA?  Would local linear 
approximation be as accurate in predicting the line of sight distance for an antenna height of 11 
meters?  Explain your reasoning.

Using local linear approximation we can then predict the line of sight distance for a 51 
meter tower as follows:

f (51)  f (50)  f ' (50)(51 50)

f (51)  13183 132(1)

f (51)  13315 meters

Now we compare this to the distance found using the original equation:
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f (51)  2(1738000)(51)  (51)2

f (51)  13315 meters

The local linear approximation is very accurate at h=51. 

The concavity of the graph from question D shows that a prediction using local linear 
approximations would not be as accurate.   

F. What is the rate of change of the distance, a, along the lunar surface to the lunar tower at the 
line of sight position when h = 50 m? Express your answer as a whole number.

Use the chain rule to find the rate of change. 

da da du
 

dh du dh

 r 
a  r cos1 

 r  h 

r
Let u 

r  h

then )a  r cos1(u

da
 1 

1

1


 r   u 2 12  cos  u 0
du

da
r  

1

1


   u 2 2

du

1




da  r 
2  2

 r 1   
du   r  h  

du
 r  1 r  h  2   r  h 1 0

dh

du  r


dh  r  h 2



www.nasa.gov Lunar Surface Communication 8/10

1

da  r 


 
2 2  r

 r 1    
dh   r  h   2

  r h

da  r  r
 

dh 1
2  r 

2
h 2

 r 
1  2  r  h 

da  r  r
 

dh 1  2 2 r  h r  h  r 2  2

 
  r h 2
  

da r 2


dh   1

 r  h 2  r 2 2   r  h

da r 2


dh  

1

2rh  h2 2   r  h

da 1,738,000 m2


dh  
1

2 1,738,000 m 50 m   50 m 2 2   1,738,000 m  50 m

da
131.8 meters per meter of tower height

dh

Note:  Once again, because r is significantly greater than h, you may simplify the 

da r 2 da r da r
equation    or 

1
 to: 

1
and arrive at the same 

dh   dh dh 2rh
2rh  h2 2   r  h  2rh 2

solution.

G. Under what conditions do the line of sight formula (question D) and the arc length formula 
(question E) give significantly different answers? When would you use the arc length formula on 
the Moon or on some other solar system body?

If r is comparable in size to h, there would be a significant difference. You would use the 
arc length formula on the Moon only if the antenna height were measured in hundreds 
of kilometers, which is not a reasonable engineering solution. You might, however, use 
the arc length formula on a small asteroid that is less than a few kilometers across.
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Scoring Guide 
Suggested 14 points total to be given. 

Question Distribution of points 

A 1 point 1 point for the correct formula 

B 1 point 1 point for the correct formula 

C 1 points 1 point for the correct distance

D 4 points 1 point for the correct graph with correct labels and scale

1 point for explaining that distance increases at a decreasing rate 

1 point for correct value of ds/dh

1 point for correct interpretation of ds/dh

E 3 points 1 point for correct linearization

1 point for comparison of linearization with actual value 

1 point for correct conclusion that linearization is not as accurate 
for an antenna of height 11 m 

F 2 points 1 point for correct derivative formula

1 point for correct numerical value

G 2 points 1 point for explaining when values would differ

1 point for explaining when to use the arc length formula 
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Contributors 
Thanks to the subject matter experts for their contributions in developing this problem:  

NASA Experts 

NASA Goddard Space Flight Center

Dr. Sten Odenwald* 
Astronomer and Education Lead for IMAGE and Hinode 
Catholic University - NASA 

*Special thanks to Dr. Odenwald for suggesting this problem based on his Weekly
 Space Math resource at http://spacemath.gsfc.nasa.gov. It appears as problem 84, 
 “Beyond the Blue Horizon.” 

Problem Development 

NASA Langley Research Center 

Chris Giersch 
Communications and Education Lead 
Exploration and Flight Projects Directorate 

Sharon Bowers 
Educator in Residence
Office of Strategic Communications and Education 
NASA Langley Research Center 

NASA Johnson Space Center 

Monica Trevathan 
Education Specialist
Human Research Program Education and Outreach 

Natalee Lloyd 
Educator, Secondary Mathematics 
Human Research Program Education and Outreach 

Traci Knight
Graphics Specialist
Human Research Program Education and Outreach 

Virginia Beach City Public Schools  

Josephine Letts 
Mathematics Teacher
Ocean Lakes High School 

University of North Carolina Charlotte  

Dr. David Pugalee 
Research Associate
Center for Mathematics, Science & Technology Education

Texas Instruments  

Ray Barton
T3 National Instructor 
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