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NASA UNVEILS LATEST RESULTS
FROM LUNAR MISSION, HELPS
PREPARE FOR NEXT STAGE OF

SCIENTIFIC DISCOVERY
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LRO Mission Objectives
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Objective: The Lunar Reconnaissance Orbiter (LRO) mission objective
is to conduct investigations that will be specifically targeted to prepare

for and support future human exploration of the Moon.
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LRO Instruments and Investigations

LOLA: Lunar Orbiter Laser Altimeter

LROCAWAC: Wide-Angle Camera

LROC/NACs: Narrow-Angle Cameras
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CRaTER: Cosmic Ray Telescope...

LEND: Lunar Explr. Neutron Detector
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LRO Instrument Montage Video




Mark Robinson,
LROC Principal Investigator,
Arizona State University



Constellation Design Reference
Sites (50)

« Adiverse and representative
set of sites selected on
scientific, engineering,
resource potential, and terrain
« 10 x 10 km — full coverage,
stereo

20 x 20 km — best effort,
stereo

40 x 40 km — best effort

Not landing sites! At least not for now...
http://ser.sese.asu.edu/LSM/targeting.php







Lunar Scarps

« LROC NAC images show meter-scale tectonic
landforms associated with previously known and
newly discovered lobate scarps.

*Newly discovered set
of fractures behind Lee-
Lincoln scarp

* We can see that Lee-
Lincoln was pushed up
and over small, young
impact craters indicating
a very young age for the
scarp.




Newly Discovered Lobate Scarps

« Six of the newly detected lunar
scarps (white dots) are at high
latitudes (> £60°).

* Newly detected scarps suggest
thrust faults are globally distributed.

* A global distribution of thrust faults
has important implications for the
thermal history of the Moon.




Impact Melts

Impact melt deposits are well preserved in Copernican craters. Important
markers of cratering dynamics and conditions. Giordano Bruno crater (22
km diam., below). Mandel'shtam F farside crater (17 km diam., right).

http://Iroc.sese.asu.edu
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David Paige,
Diviner Principal Investigator,
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Diviner Day and Night Global Temperature Maps
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Diviner South Polar Channel 8 Thermal Image (K)
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Diviner South Polar Channel 8 Thermal Image (K)




Movie:

north_pole winter_flyover 640x360.mov




Lunar Polar Cold Trap Temperature Extremes
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Galactic Cosmic Rays Near the Moon

 Cosmic Ray Telescope for the Effects of Radiation (CRaTER):
6-element, solid-state detector and tissue-equivalent plastic (TEP)
telescope measures radiation caused by galactic cosmic rays (GCR)

Detector Pairs

 CRaTER’s Exploration Goal: Characterize global lunar radiation environment

 CRaTER’s Science Goal: Explore physical interaction of GCR with lunar surface



Movie:
CRaTER 640x360.mov



Radiation Dose Near Lunar Surface Tolerable During
Deep Solar Minimum With Peak GCR

 We estimate solar-minimum radiation dose from GCR that an astronaut
would encounter on lunar surface, protected by only a thin level of
shielding (spacesuit or hull of structure)

 Example: Human eye dose rate (relevant for cataracts):
— ~ 50 milli-Gray/year (see H. Spence et al., U21C-07)
— One year on lunar surface - total eye lens dose: ~50 milli-Gray

— Comparable to US yearly exposure limit (established by the Nuclear
Regulatory Commission) for people with occupational exposure to
ionizing radiation (x-ray technicians, uranium miners, nuclear power
plant workers)

 CRaTER results consistent with expectations from earlier data and models

e Current deep and prolonged solar minimum vyields (worst-case) GCR rates
~ 20% higher than earlier space-age solar minima (and ~x3.5 higher than
during typical solar maximum) (see R. Mewaldt et al., SH13C-08)



Radiation Source Rate (#/s)

CRaTER Reveals Lunar Blockage of GCR

(see J. Kasper etal., U21 C—08)
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CRaTER Discovers Excess Radiation Near Moon

(see J. Kasper et al., U21C-08)
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CRaTER Discovers Excess Radiation Near Moon

(see J. Kasper et al., U21C-08 and Looper et al., U31B-25)

— =2 Moon blocks GCR; primary radiation source falls predictably with altitude
— =2 Secondary radiation source increases systematically closer to the Moon
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Summary of CRaTER Results

 CRaTER’s Exploration Goal: Characterize global lunar
radiation environment

— Lunar surface radiation elevated during this extreme
solar minimum, but still at tolerably low-level radiation
risk.

 CRaTER’s Science Goal: Explore physical interaction of GCR
with lunar surface

— Moon blocks GCR, reducing radiation near surface, but
secondary radiation source discovered, caused by GCR
interactions with Moon.







