CAPABILITIES
IMPLEMENTATION PARTNER FOR NASA/NIH BIOMEDICAL
RESEARCH OPPORTUNITY

Aurora specializes in providing outstanding science and engineering services in support of spaceflight research.

Overview

• Aurora’s Engineering Project Support encompasses all activities required for spaceflight experiments, including:
 • System requirements definition
 • Flight system design and fabrication- including mechanical, electrical, and software engineering
 • Acceptance and certification testing
 • Hardware integration and documentation
 • Experiment protocol development support
 • Ground / on-orbit crew training and procedures development
 • Ground processing and mission support
• Experienced staff who focus on project-specific success criteria.
• We seek the best and most cost-effective design solution for each project we undertake, focusing on delivering maximum science return.
• Widely diversified technology portfolio: aerospace, biotechnology, health care, clean energy, supply chain management.

Aurora delivers rugged, reliable hardware and software systems for use aboard the ISS

Spaceflight Hardware Currently On-orbit

SPHERES (ISS, 2005-)
Positive Pressure Relief Valve (All ISS pressurized modules, 1998-)

Biological/Life Sciences Research Payloads

Plant Growth Facility (STS-87, 1997)
Dynamic Load Sensor (STS-62, 1994)
Spacelab Life Sciences-1,-2 (STS-40 1990, STS-58 1993)
Mental Workload Performance Experiment, IML-1 (STS-42, 1992)
Spacelab ATLAS-1 (STS-45, 1992)
Middeck 0-Gravity Dynamics Experiment-1 (STS-48, 1991)
Spacelab D-1 (STS-61A, 1985)
Spacelab 1 (STS-9, 1983)

Cell and Tissue Culture Hardware Development

• Cell Culture Unit (Transitioned to SLCC project in 2004)
 • Designed for autonomous on-orbit operations, 18 Cell Specimen Chambers (CSCs), 60 samples, 40x & 200x video microscopy.
 • Extensive testing with yeast, tobacco, euglena, mammalian cultures in prototype hardware.
• Single Loop for Cell Culture (SLCC)
 • On-orbit operations within a host incubator, 1 Cell Specimen Chamber (CSC), 6 samples.
 • Ten flight units delivered to NASA Ames Research Center in 2007.
SINGLE LOOP FOR CELL CULTURE (SLCC)

Single Loop for Cell Culture (SLCC) is a self-contained, perfusion-based spaceflight cell culture system with capabilities for automated growth initiation, feeding, sub-culturing and sampling.

Each SLCC provides:

- 1 Cell Culture Perfusion Loop with a 10 mL Cell Specimen Chamber
- 6 Removable Sample/Inoculation Containers (provide containment of tox level 2 fixatives/additives)
- Fresh and Spent Media Bags
- CSC Stirring Capability
- Sample/Inoculation Container Mixing Capability
- Temperature and Humidity Data Recording
- In-line Bubble Trap
- External Viewing of CSC
- Autonomous Operations
- Gas Exchange
- Subculturing
- Crew Access

Power and environmental control provided by host incubator.

Designed for integration into:
Commercial Generic Bioprocessing Apparatus (CBGA)
(Developed by BioServe Space Technologies)

CGBA capabilities include:
- 2 SLCC units supported at a time
- Temperature control range: -16°C to 37°C
- Remote Commanding
- Data Telemetry

SLCC can also be integrated into host incubators providing both temperature and CO2 control.

10 SLCC flight units:
Delivered to NASA Ames Research Center in 2007 - ready for flight.

Aurora can provide specialized hardware support for SLCC.