Human Systems & Robotics

Dr. Rob Ambrose, NASA JSC
November 2007
I'm no Gene Kranz

Robotics is Enabling the Architecture

Turning those Concepts into Reality
Lunokhod

- First Flight April 1970
- Lunokhod 1 & 2
- 840 Kg Mass
- 1 & 2 KPH
- 37 Km Life Range (L2)
Apollo Lunar Roving Vehicle (LRV)

- First Flight April 1971
- Apollo 15, 16 & 17
- 210 Kg Mass
- 1/6g Payload 490 Kg
- 15 KPH
- 100 Km Life Range
Apollo Lunar Roving Vehicle (LRV)
Robotic Perspective on NASA’s Exploration Architecture

Surface Mobility

Surface Handling

Human-Systems Interaction
LAT-2’s Architectural Options

- Option 1 Results from LAT-1
- Option 2 “Mini-Habs”
- Option 3 “Monolithic Hab”
- Option 4 “Mobile Lander”
Architecture Concept– Mobile Habitat

<20,000 Kg Payload
Integrated Power
Docking Together
1000+ Km Range
Architecture Concept—Small Pressurized Rover

Fast Out the Door
Radiation Protection
Hatch Docking
100+ Km Range
NASA’s Exploration Technology Development Program

Turning the Cartoons into Reality
The Exploration Systems Mission Directorate (ESMD) created this technology program in 2005.
- Exploration Technology Development Program (ETDP)
- ETDP Managed by ESMD Advanced Capabilities Division
- Program office located at NASA Langley Research Center (LaRC)
- Point of contact is Frank Peri (frank.peri-1nasa.gov)
- Dana Gould & Diane Hope are the Element Managers

Broad portfolio of projects, with engineering focus
- Propulsion, life support, power, human-robotics systems
- Focused on technology for exploration needs
 - Crew Launch Vehicle (CEV)
 - Launch Systems
 - Surface Systems

Driven by need dates and Technology Readiness Levels (TRL)
- Exploration systems have development milestones
- Technology is matured to be at TRL-6 by Preliminary Design Reviews (PDR’s)
HRS
Technology Description (ATHLETE)

- Leadership
 - NASA JPL
 - B. Wilcox

- Technologies
 - Wheel-on-limb Mobility
 - Mobility & manipulation
 - Active suspension
 - Payload offloading
 - Habitat docking
 - Hatch mating

- Collaborations
 - Stanford (Latome)
 - Michelin (Switzerland)
Leadership
- NASA JSC
- Ambrose, Bluethmann, Junkin

Technologies
- Novel chassis kinematics
- Active/Passive suspension
- Upright crew accommodations
- Chassis leveling
- Small Pressurized Rover Ops

Collaborations
- ETDP Advanced Suits
- ETDP Thermal Control
- ETDP ISRU
- ETDP Power
Leadership
- NASA GRC & CMU
- Whittaker, Caruso

Technologies
- Novel chassis kinematics
- Integrated drill
- Wheel spikes for drilling
- Dark navigation

Collaborations
- CMU
- NorCat
- ETDP ISRU
HRS Technology Description (Centaur)

- **Leadership**
 - NASA JSC
 - Ambrose, Diftler, Bluethmann

- **Technologies**
 - Autonomous Manipulation
 - Dexterity
 - Mobile Manipulation
 - Time Delayed Supervision
 - Astronaut Assistance
 - Surface Science

- **Collaborations**
 - UMass (Grupen)
 - MIT (Brooks)
 - Vanderbilt (Peters)
 - Many earlier grants
Surface Scenario Video (2 minute)
Crater Access Scenario Video (2 minute)
Plans for FY08

- **2008 Field Test**
 - ATHLETE, Chariot, Scarab, K-10’s, Crane
 - December Workshop
 - June Test

- **New Technologies for 2009**
 - Pressurized cabin mockup
 - New batteries & fuel cells
 - Chariot crew accommodations
 - 1/6g ATHLETE testing
 - New wheels
 - New drives
 - New supervision software
HRS Team
(7 NASA Centers and 10+ Companies)