CxP Software and Autonomy Technology Needs

Ron Morillo
SAVIO Software
ronald.morillo@jpl.nasa.gov
(818) 354-6888
Software technology drivers

- The Constellation Program is interested in software technologies that support the following program objectives:
 - Build safer software-intensive systems
 - Mitigate common cause failures
 - Reduce development and schedule risk
 - Manage the size and complexity of software interactions in all phases of the life-cycle.
 - Improve fault detection, isolation and recovery techniques
 - Lower operational and maintenance cost.
 - Enable the move to greater on-board autonomy
 - Intelligent human-in-the-loop automation
 - Improve system performance analysis.
 - Timing, trending, forecasting
Specific SW technologies of interest - 1

♦ Requirement Maturation:
 • Ontology systems to determine precise meaning of requirements, avoid possible (mis)interpretations and ensure completeness of the requirement set.
 • Requirement analysis for inconsistencies and contradictions
 – Many software-related mishaps, including common cause failures, trace back to incomplete or missing requirements.

♦ Design/Architecture:
 • Capture the design knowledge once; use it to code, test and verify, operate the system.
 • Physical and behavioral models that capture system properties, cause/effects, environment and interactions:
 – Improve model-based analysis and verification, testability and timing analysis.
 • Quantify the complexity of SW code and interfaces
 • Investigate the true bounds of dissimilar software design.
 • SW fault containment concepts.
Autonomy and FDIR:

- Adjustable levels of autonomy and FDIR.
- Technology for onboard Decision Support and Expert-guided troubleshooting to crew/ Ground.
- Tie diagnostic/prognostic tools to on-board reconfiguration managers and/or intelligent controllers.
- Within tight timing constraints:
 - Minimize false alarms, diagnosis ambiguity.
 - Detect trends.
 - Assess failure severity for C&W.
- Better forecasting capability (of system degradation, of remaining useful life, of impending failure...).
- Re-planning following a failure:
 - Decompose high-level objectives onboard, incorporate locally determined information (situational awareness) and create an new execution plan.
- When autonomy meets imperfect information: inductive reasoning techniques for managing certain degree of data inconsistency, limited knowledge or uncertain symptoms; models that manage imprecision and uncertainties.
Specific SW technologies of interest - 3

♦ **SW implementation:**
 - Code analyzers and compliance rule checkers.
 - Auto coding of critical software functions.

♦ **SW Verification and Validation:**
 - Targeting specific tests towards mitigating specific classes or types of software defects.
 - Error injection, tracing and analysis technology.
 - Model-based analysis for validation of safety-critical software designs.
 - Test suite generation, including behavioral coverage of safety-critical software functions.
 - Advanced Validation Testing that determines failure boundaries and margins for safety-critical functions.
 - Auto code tools for state estimation, data analysis and to streamline the test activity.
 - Verification and validation of autonomy and automation functions implemented in flight computers.
Software reliability

- Quantifying the software risk contribution to the total risk in a system.
- Modeling software failures.
- Mature the technology of predictive SW/system reliability models by validating these models with operational data.