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loon will be Integrated and Synergistic §

-{/Iluman/Robotic Operations on the

* Lunar Science Exploration Goals

— Met through reconnaissance orbiters and landers, robotic
assistants

— Support human exploration

 Human exploration

— Base site preparation—enable landing after safe havens
established

— Re-supply—enable long duration exploration
 ISRU |

— Orhital reconnaissance, ground truth landers, demonstrations
and pilot plants

— Required to establish a functioning lunar economy, enable
robust science, pave the way for commercial operations,
perhaps NASA's exit strategy for the moon

. Preparation for Mars
— Robotics in developing technology and operatiens:for-Mars

exploration

-
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¥ Synergy of Lunar Science
% and Exploration

W. David Carrier Ill, soll
scientist, asked the A-11 crew
to photograph their bootprints
on the moon -

— Soil mechanical properties
— Porosity, cohesiveness
— Trafficability

This photograph is now one
of the most famous in history

— One of the iconic images of
the Space Age

— Demonstrates that we were
there

-— Emblematic of what humans
beings can achieve

— Today, the science utility and
rationale for this image Is
largely forgotten
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%% Robotic Missions Prior to

% Human Landings

e Reconnaissance

— Global high-resolution, multi-spectral maps of the moon
» SCIENCE: Topography, illumination, mineralogy mapping....
« EXPLORATION: Landing site selection
* |ISRU: Resource identification

— Site surveys
» SCIENCE: Regolith properties, three-D structure, gas and volatiles abundance

i « EXPLORATION: Landing site validation, detailed mapping, infrastructure
\i emplacement

* |ISRU: Resource confirmation, extraction demonstration, pilot plant

 Technology development needed
— Capabilities:
* Pinpoint landing—allows multiple visits to the same site

* Autonomous systems—increases asset capability
* ISRU systems—enables robust exploration and transition to commercial operations

— Enabled by
* Netcentric operations—Iink the assets for optimal performance
» Telerobotic operations—reduce crew radiation risk, prepare for Mars

Science Enables Preparation for Human Lunar Exploration

S
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Dlgltal Scene Matching Area
Correlator (DSMAC)

9 19705 — Pre GPS

DSMAC |V Sensor

e Highly Accurate
Navigation Aide since

e Sensor
— Optical device captures
digital grayscale images

— Images correlated against
specified reference map
images

o Flashlamp [lluminator

— Provides lighting for use
during night flights.

DSMAC is Accurate, Light, Affordable, Reliable and Readily

Adaptable to Lunar Navigation Applications
Impléementingthe. Vmon_
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Lunar Robotic Precursors

% Blaze the Trail

Reconnaissance | Establish Base | ~ Human Exploratio!

A A M A A A A A A

LRO -Ice Ice S'te
Finder Mapper Survey

AAAA A A A A

y : Recon Robotic Precursors Human Support
Lunar Exploration to
o 0 0 1 *
Science Missions A A Human Base Site (*)

Solar Sentry L-2 Relay

,-r;‘ﬁm_ *Habitats, shielding, power, supplies, not in ESAS .
JAURVAN AN N A A

A A

** Choice of te&hnology depends on eaflier missions f ProYides airwater, propellants

A A A
H_/

Other Related | A A A : |
Missions | EsA India China, : Potential NEOs :
! |

| International Missions ISRU Precursors

Comprehensive robotic precursor program is essential for human exploration
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¢ Non-ISRU Lunar
“ Robotic Precursor System

Flight

Mass
(kg)

Power
(W)

Reconnaissance

Flight

Mass Powe

(kg)

r (W)

Base Site Preparation

Flight

Exploration

Mass Power

(kg)

(W)

by - _ - Preposition Fuel
LRO 100 200 Power 2500 [ 4000 Delivery 2400 TBD
.'Ice Preposition Hopper
Fi*:d B 3x10 | 3x10 Cargo 2500 100 Explorer 100 100
] " Short
e 2 x 120 | Preposition
M 4; per 2 x 250 (RTG) Habitat 2500 | 1000 Fé%r\}%? 250 1000
- Long
Pathfinder 150 100 Range TBD TBD
Rover
Solar 3 X
L2 Relay 100 300 Sentry 3 x 200 500

13 landers, 7 with payload <250 kg (medium lift). 11 require pinpoint landing capability W
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Lunar ISRU Mission List

Mass Power Precision Flight Mass Power Precision
(kg) (W) (m) (kg) (W) (m)
*Regolith Water
1. Moving 150 500 100
5 .Emo Demo
olith
intering | 150 | 500 100 oo blan: | 250 | 4000 100
Demo
ite Water Pilot
Prep?aration 200 2000 10 Plant 225 2700 10
bitat 3 X 3 X Cryo
Syéelding 500 7000 — Mission 208 1000 10
LUNOX Production | 2300 -
Demo 20 1000 100 Plant 2400 60000 100

ISRU mass and power estimates based on Colorado School of Mines lunar factory models
12 landers, 8 with payload <250 kg. All require pinpoint landing T
Implémentingthe Vmon_




i Candidate Robotic Missions
© for ISRU

« EXxpedite regolith handling, paving
demonstration

‘ — Wide applicability

%g — Conduct basic soll science
i1« Expedite regolith processing testbed on lunar
: surface

— E.g., 3 demo package on lunar lander in 2010

e Pursue LUNOX and lunar ice simultaneously
— Flexibility in base site selection
/ — Prove out different technologies for Mars

{

/ e Sub-optimal solutions are OK

ISRU Cost & Schedule Savings Mandates Demonstration of Operations

Implémentingithe Virion



 Notable Robotic Characteristics

— 60% of precursors (15) require-medium lift (small to medium
lander)

— Precision landing: <100 m required on nearly all landed flights
— Teleoperational: Required on all rovers

« Recommend rapid development of new technologies
— Precision landing
[ — Autonomous systems
— ISRU
/ « Recommend development of the lunar robotic lander
as a commodity
/ — Reduce or eliminate NREs through flexible, modular design

— Non-optimal design, yet capable of delivering variety of
payloads

{ — Production run allows cost savings to be identified and realized

Required Tech Development will Benefit from Leveraging Existing DOD Systems
ImplémentingtheVision



The Human Adventure is Just Beginning
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