New Method for Updating Mean Time Between Failure for ISS Orbital Replaceable Units

Consultation Report

December 1, 2005
VOLUME I: REPORT

TABLE OF CONTENTS

1.0 Authorization and Notification.. 3
2.0 Signature Page... 4
3.0 List of Team Members... 5
4.0 Executive Summary.. 6
5.0 Consultation Plan... 7
6.0 Description of the Problem, Proposed Solutions, and Risk Assessment.................. 8
7.0 Data Analysis... 9
8.0 Findings, Observations, and Recommendations.. 11
9.0 Lessons Learned... 12
10.0 Definition of Terms... 13
11.0 List of Acronyms... 14
12.0 References.. 15
13.0 Minority Report.. 16

VOLUME II: APPENDICES

List of Appendices

Appendix A. NESC Request Form (PR-003-FM-01) ... 17
Appendix B. Details of Calculations and Considerations by Peer Review Team........... 21
1.0 Authorization and Notification

This request to conduct a peer review of the International Space Station (ISS) proposal to use Bayesian methodology for updating Mean Time Between Failure (MTBF) for ISS Orbital Replaceable Units (ORU) was submitted to the NASA Engineering and Safety Center (NESC) on September 20, 2005.

The request was presented and the plan approved by the NESC Review Board (NRB) on October 6, 2005. This final report with recommendations to the ISS Program was presented to the NRB on November 17, 2005.
2.0 Signature Page

Consultation Team Members

______________________________ _______________________________
Vickie S. Parsons, NESC Vitali Volovoi

James Womack
3.0 List of Team Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vickie Parsons</td>
<td>NESC Systems Engineer</td>
<td>LaRC</td>
</tr>
<tr>
<td>Vitali Volovoi</td>
<td>Statistical Consultant</td>
<td>Georgia Institute of Technology, School of Aerospace Engineering</td>
</tr>
<tr>
<td>James Womack</td>
<td>Statistical Consultant</td>
<td>Aerospace Corporation</td>
</tr>
<tr>
<td>Cindy Bruno-Miller</td>
<td>Program Analyst, MTSO</td>
<td>LaRC</td>
</tr>
<tr>
<td>Elizabeth Holthofer</td>
<td>Technical Writer</td>
<td>ViGYAN, Inc., LaRC</td>
</tr>
</tbody>
</table>

Support

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cindy Bruno-Miller</td>
<td>Program Analyst, MTSO</td>
<td>LaRC</td>
</tr>
<tr>
<td>Elizabeth Holthofer</td>
<td>Technical Writer</td>
<td>ViGYAN, Inc., LaRC</td>
</tr>
</tbody>
</table>
4.0 Executive Summary

The ISS Program requested a peer review of their proposal to use operational data to update the MTBF for ISS ORUs by applying Bayesian methodology. The results were requested by October 20, 2005 in order to be available during the process of reworking the current ISS flight manifest.

After a review of the documentation provided by the ISS Program and discussion with the principle contributors to the proposal, the statistical peer review team concluded that applying Bayesian methodology is an appropriate approach for updating MTBF estimates. However, several assumptions used in this particular application should be refined in order to preclude overly optimistic estimates. Specifically, the selection of α, the justification for excluding degradation, and the categorization of ORUs need to be re-visited.
5.0 Consultation Plan

This consultation consisted of a peer review by statistical experts of the proposed application of Bayesian methodology to revising MTBF estimates for ISS orbital replacement units. Each member of the review team analyzed the following documents and files:

- Bayesian Methodology and How It Could Apply to ISS-USOS External ORU MTBFs, Jean Ni, August 29, 2005.
- Estimation of Prior Distribution Parameter α Used in Bayesian Methodology -2, Jean Ni, September 13, 2005.
- Estimation of Prior Distribution Parameters Used in Bayesian Methodology, Jean Ni, June 23, 2005.
- Various Excel spreadsheets for Bayesian calculations by ISS.
- Modeling Analysis Data Set (MADS) for ISS ORU manufacturers’ estimated failure rates

A telephone conference was conducted between the peer review members and representatives of the ISS Program responsible for the proposal, where questions and details were pursued. Two additional telephone conferences and email exchanges resulted in the final peer review results and recommendations that follow.
6.0 Description of the Problem, Proposed Solutions, and Risk Assessment

The ISS Program proposed the application of Bayesian methodology to revise (increase) the MTBF estimates for ORUs. The risk inherent in increasing the MTBF estimates would be a failure to have necessary replacements if the MTBFs are overly optimistic. During the analyses of the proposal, the statistical peer review team identified several areas of concern, explained in the following sections.
7.0 Data Analysis

Selection of the prior distribution parameter α is the most important and difficult aspect of applying the Bayesian methodology to updating reliability estimates. The values of α under consideration for use in ISS ORUs are between 0.1963 and 1.5582, which are smaller than typical values used in other space programs. These values were derived from various random failure rate estimates (the shape parameter) provided in the Fisher-Price report and manufacturer data on individual components (the scale parameter) contained in the MADS dataset. Small values for α correspond to wide confidence bounds for prior estimated failure rates and lead to discounting the prior information. Values smaller than 1.368 are outside of a meaningful range as described in the detail calculation section.

Determining the best value of α would require determining the uncertainty in the original failure rate of each individual ORU. All of the assumptions and uncertainties used to estimate each part failure rate in the ORU would needed to be modeled by a statistical distribution from which it would be possible to determine the distribution of the ORU failure rate. This, however, is a very difficult and time-consuming process.

A simpler approach for selecting an α value was used by the Hubble and Tracking and Data Relay Satellite (TDRS) Programs. They used an α value of 2.2068, which was determined by setting the probability that λ is less than $\lambda_0/5$ equal to 5 percent. This models the assumption that there is only a small probability that the original failure rates are larger than five times the true failure rate. Use of 5 percent is a typical rule of thumb for statistical significance. The recommended 1.56 by the ISS Program yields a corresponding probability of 10 percent. The 2.2068 value of α has undergone extensive review by the Hubble Program. The prior distribution for $\alpha = 2.2068$ (see Figure 1 in Appendix B) has a much more reasonable shape for modeling the uncertainty in the original failure rate. Also, it has proven to provide good reliability updates for the TDRS Program, in line with updates calculated by other acceptable reliability estimating methods.

Exponential distributions dominated the reliability world for decades due to the simplicity of the systems analysis with exponentially distributed failures and the need for only one parameter.

3 Modeling Analysis Data Set (MADS).
failure rate or its inverse, mean time between failures (MTBF), as opposed to at least two required to define other distributions. The latter consideration was (and still is) of great importance when there is a shortage of the data needed to characterize the failure pattern statistically. The use of an exponential distribution to describe “random” failures can be complemented by deterministic life limits for units that are known to degrade with time. However, for some failure modes (especially for mechanical components), the degradation is gradual, and so is the corresponding increase in failure rate. This continuous increase in the failure rate is not limited to the end of life, and is usually described, depending on the type of degradation, either by a Weibull distribution with the shape parameter $\beta > 1$ or by a LogNormal distribution. The ISS proposal assumes an exponential distribution of the failure frequencies, thus ignoring the degradation of individual units. The MADS dataset indicates that manufacturers’ estimates of Weibull shape parameter β range from 2.5 to 5.0, which raises the concern than degradation should not be ignored. The calculations for inclusion of failures obeying Weibull distributions into the Bayesian updating procedure can be found in Womack’s report.6

Several assumptions within the Fisher-Price report were accepted by the ISS Program without explanation.7 One concern for this peer review team was the logic associated with grouping large sets of diverse components into four categories. The Fisher-Price method for aggregation of failure estimates for the analog study was not explained in the portion of the Fisher-Price provided to this peer review team.8 Then, the final Bayesian methodology is planned to be applied to all ORUs uniformly.

This ISS proposal, as currently presented or with the recommendations cited in this report, can lead to counterproductive results by removing conservatism from the estimation of the failure rates, unless this is supplemented with the rigorous risk analysis for over and under predicting the amount of spares required. This is due to the fact that under-predicting the amount of spares has greater consequences that over-predicting, and an initial conservatism in estimating MTBF compensated for this inequality.

6 Ibid.
8 Ibid.
8.0 Findings, Observations, and Recommendations

F-1 Small values for α correspond to wide confidence bounds for prior estimated failure rates and lead to discounting random failure rate estimates (the shape parameter - Fisher-Price report\(^9\)) and manufacturer data on individual components (the scale parameter) contained in the MADS dataset. Values smaller than 1.368 for α are outside of a meaningful range.

F-2 The MADS indicates that manufacturers’ estimate of β range from 2.5 to 5.0, which raises the concern that degradation should not be ignored.

F-3 The use of an exponential distribution complemented with establishing deterministic life limits for units known to degrade with time can lead to overly optimistic prediction, since units can degrade gradually, resulting in continuously increasing failure rate.

F-4 The risk inherent in increasing the MTBF estimates would be a failure to have necessary replacement if the MTBFs are less conservative.

R-1 Within the Bayesian methodology for MTBF estimates, use a value of $\alpha = 2.2068$ until additional analysis can show cause for another value. (F-1)

R-2 Validate the β values within the MADS. (F-2)

R-3 If β values within the MADS are indeed greater than 2.0, adjust the Bayesian methodology to include consideration of those degradation values, even though the unit life cycle is considerably greater than the expected life cycle of the ISS. (F-2)

R-4 Investigate some of the more critical components individually for MTBF. (F-3)

R-5 Rather than rely solely on MTBF estimates, maintain cognizance of the associated risk analyses and schedule replacements accordingly. (F-4)

\(^9\) Ibid.
9.0 Lessons Learned

None.
10.0 Definition of Terms

Corrective Actions Changes to design processes, work instructions, workmanship practices, training, inspections, tests, procedures, specifications, drawings, tools, equipment, facilities, resources, or material that result in preventing, minimizing, or limiting the potential for recurrence of a problem.

Finding A conclusion based on facts established during the assessment/inspection by the investigating authority.

Lessons Learned Knowledge or understanding gained by experience. The experience may be positive, as in a successful test or mission, or negative, as in a mishap or failure. A lesson must be significant in that it has real or assumed impact on operations; valid in that it is factually and technically correct; and applicable in that it identifies a specific design, process, or decision that reduces or limits the potential for failures and mishaps, or reinforces a positive result.

Observation A factor, event, or circumstance identified during the assessment/inspection that did not contribute to the problem, but if left uncorrected has the potential to cause a mishap, injury, or increase the severity should a mishap occur.

Problem The subject of the independent technical assessment/inspection.

Recommendation An action identified by the assessment/inspection team to correct a root cause or deficiency identified during the investigation. The recommendations may be used by the responsible C/P/P/O in the preparation of a corrective action plan.

Root Cause Along a chain of events leading to a mishap or close call, the first causal action or failure to act that could have been controlled systemically either by policy/practice/procedure or individual adherence to policy/practice/procedure.
11.0 List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HST</td>
<td>Hubble Space Telescope</td>
</tr>
<tr>
<td>ISS</td>
<td>International Space Station</td>
</tr>
<tr>
<td>MADS</td>
<td>Modeling Analysis Data Set</td>
</tr>
<tr>
<td>MTBF</td>
<td>Mean Time Between Failure</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautic and Space Administration</td>
</tr>
<tr>
<td>NESC</td>
<td>NASA Engineering and Safety Center</td>
</tr>
<tr>
<td>NRB</td>
<td>NESC Review Board</td>
</tr>
<tr>
<td>ORU</td>
<td>Orbital Replaceable Units</td>
</tr>
<tr>
<td>TDRS</td>
<td>Tracking and Data Relay Satellite</td>
</tr>
</tbody>
</table>
12.0 References

Modeling Analysis Data Set (MADS).

13.0 Minority Report

There are no dissenting opinions in this report.
VOLUME II: APPENDICES

Appendix A. NESC Request Form (PR-003-FM-01)
New Method for Updating Mean Time Between Failure for ISS Orbital Replaceable Units

NASA Engineering and Safety Center Request Form

Submit this ITA/I Request, with associated artifacts attached, to nrbexecsec@nasa.gov or to NRB Executive Secretary, M/S 105, NASA Langley Research Center, Hampton, VA 23681

Section 1: NESC Review Board (NRB) Executive Secretary Record of Receipt

<table>
<thead>
<tr>
<th>Received (mm/dd/yyyy h:mm am/pm)</th>
<th>Status: New</th>
<th>Reference #: 05-163-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/20/2005 12:00 AM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initiator Name: Neil Lemmons</th>
<th>E-mail: neil.lemmons-1@nasa.gov</th>
<th>Center: JSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone: (281)-244-8080, Ext</td>
<td>Mail Stop: OM</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Short Title: New Method for Updating Mean Time Between Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Jay Leggett got a call from Neil Lemmons (JSC) in the ISS program and he is requesting a peer review of an assessment that he performed (or someone in his group) on using ISS Orbital Replaceable Unit (ORU) operational data to update Mean Time Between Failure (MTBF) by applying Bayesian methodology. Updating the MTBF for ORUs is important in setting payload requirements for future missions (ATV, HTV, SSP). The current flight manifest is being reworked and this analysis could play a role in manifest needs. Neil mentioned that the a manifest decision is targeted for the end of October. Neil Lemmons would be the initiator. Is there anything else that you need on this? This looks like something that would fall in Vickie's court. Thanks, Jay</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source (e.g. email, phone call, posted on web): phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Request: assessment</td>
</tr>
<tr>
<td>Proposed Need Date: 10/20/2005</td>
</tr>
</tbody>
</table>

Date forwarded to Systems Engineering Office (SEO): (mm/dd/yyyy h:mm am/pm):

Section 2: Systems Engineering Office Screening

Section 2.1 Potential ITA/I Identification

<table>
<thead>
<tr>
<th>Received by SEO: (mm/dd/yyyy h:mm am/pm): 9/20/2005 12:00 AM</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Potential ITA/I candidate? [] Yes [] No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Assigned Initial Evaluator (IE): Vickie Parsons</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Date assigned (mm/dd/yyyy): 9/26/2005</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Due date for ITA/I Screening (mm/dd/yyyy): 10/6/2005</th>
</tr>
</thead>
</table>

Section 2.2 Non-ITA/I Action

Requires additional NFSC action (non-ITA/I)? [] Yes [] No

If yes:

<table>
<thead>
<tr>
<th>Description of action:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Actionee:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Is follow-up required? [] Yes [] No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>If yes: Due Date:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Follow-up status/date:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>If no:</th>
</tr>
</thead>
</table>

| NESC Director Concurrency (signature): |

Request closure date:
Section 3: Initial Evaluation

Received by IE: (mm/dd/yyyy h:mm am/pm):

Valid ITA/I candidate? ☐ Yes ☐ No

Initial Evaluation Report #: NESC-PN-

Target NRB Review Date:

Section 4: NRB Review and Disposition of NCE Response Report

ITA/I Approved: ☐ Yes ☐ No | Date Approved: | Priority: - Select -

ITA/I Lead: , Phone () - , x

Section 5: ITA/I Lead Planning, Conduct, and Reporting

Plan Development Start Date:

ITA/I Plan #: NESC-PL-

Plan Approval Date:

ITA/I Start Date | Planned: | Actual:

ITA/I Completed Date:

ITA/I Final Report #: NESC-PN-

ITA/I Briefing Package #: NESC-PN-

Follow-up Required? ☐ Yes ☐ No

Section 6: Follow-up

Date Findings Briefed to Customer:

Follow-up Accepted: ☐ Yes ☐ No

Follow-up Completed Date:

Follow-up Report #: NESC-RP-

Section 7: Disposition and Notification

Notification type: - Select - | Details:

Date of Notification:

Final Disposition: - Select -

Rationale For Disposition:

Close Out Review Date:
Form Approval and Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description of Revision</th>
<th>Office of Primary Responsibility</th>
<th>Effective Date</th>
</tr>
</thead>
</table>
| 1.0 | Initial Release | Principal Engineers Office | 29 Jan 04

NESC Request No. 05-163-E
Appendix B. Details of Calculations and Considerations by Peer Review Team

The Bayesian methodology is used to incorporate on-orbit experience into preexisting ORU reliability models. It is assumed here that the failure distribution of an ORU has an exponential distribution, that is, the ORU has a constant failure rate\(^{10}\). The ORU failure is denoted by \(\lambda\), and can be equivalently represented by its inverse, a mean time between failures (MTBF). The failure rate is usually estimated using piece part reliability models where the failure rates of the individual parts are obtained from reliability handbooks (e.g. MIL-HDBK-217) and incorporate part quality, operating environment and temperature, and duty cycle. The Bayesian methodology models \(\lambda\) as a random variable with a gamma distribution called the prior distribution. The gamma density function is

\[
f(\lambda) = \frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda} \]

\(\lambda, \alpha, \beta > 0\)

The mean of the gamma distribution is \(\alpha/\beta\) and is set equal to the initial ORU failure rate, say \(\lambda_0\). By setting \(\beta = \alpha/\lambda_0\) the prior distribution is characterized by the single parameter \(\alpha\). The on-orbit lifetime data of the ORU is incorporated into the model by computing the conditional distribution of \(\lambda\) given the observed lifetime data. This is called the posterior distribution and turns out to be a gamma distribution with parameters:

\[
\alpha_{post} = \alpha + s \quad \text{and} \quad \beta_{post} = \beta + t
\]

Where \(s = \) observed ORU failures, \(t = \) total operating time of the ORU. The updated failure rate is usually estimated by the mean of the posterior distribution given by

\[
\frac{\alpha_{post}}{\beta_{post}} = \frac{\alpha + s}{\beta + t}
\]

The prior density is intended to model our uncertainty in our original failure rate \(\lambda_0\) of the component. Figure 1 is a plot of the prior density function for several values of \(\alpha\) each with a mean equal to \(\lambda_0\).

\(^{10}\) Other Bayesian methods are available for non-constant failure rate distributions.
From Figure 1 we see the affect of α on the prior density. The smaller α is the more we bias the model toward smaller failure rates. The α values for the ISS Program were selected by fitting the prior distribution to failure rates given in the Fisher-Price report.11 Table 6.1 in Jean Ni's Bayesian presentation contains a mean, 5-percentile, median, and 95-percentile of failure rates for groups of ORUs under a number of assumptions.12 Because these failure rate distributions contain the variability of failure rates for groups of different ORUs the resulting distribution has a large variance as compared to the variance of a single ORU. Fitting an α to these distributions with large variances will result in values of α that are too small.

Considering the BCDU that experienced no failures during a total time of 236448 hours.13 Using $\alpha=0.6065$ for electronics components, there is a 95 percent confidence that MTBF will be at least 137076 hours.14 In contrast, using classical statistics based on the operational data only, the 95 percent confidence interval based on χ^2 statistics yields 78928.3. The Bayesian procedure is designed to adjust an initial estimate based on the operational data and implies that the updated result will be somewhere between prior and operational prediction, which is clearly violated here. For comparison, the lower limit of $\alpha=1.368$ for a “reasonable value”

12 Ni, Jean. Bayesian – Final PowerPoint Presentation – August 29, 2005, ISS Program Office.
14 “Bayesian Methodology and How It Could Apply to ISS-USSOS External ORU MTBFs.” Saber, August 2005. (Slide 8)
the bounds in the Fisher-Price report reflect variability among different ORUs and not an uncertainty about the failure rate for a given ORU.15

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
category & \(\lambda\) (50th) & \(\lambda\) (95th) & \(\frac{\lambda\ (95th)}{\lambda\ (50th)}\) \\
\hline
electrical & 3.33333E-07 & 7.41174E-06 & 22.23523395 \\
electronic & 4.46828E-06 & 3.92866E-05 & 8.792331264 \\
eletromech & 4.87876E-06 & 1.96078E-05 & 4.019019608 \\
mechanical & 4.02253E-07 & 7.36377E-06 & 18.30633284 \\
\hline
\end{tabular}
\caption{MTBF Variability Due to Grouping ORU into Four Categories Based on MADS}
\end{table}

The distinction between the two is important since the former is an artifact of the grouping into a category, rather than a property of an individual ORU. If the contribution to the resulting bounds from the variability between different ORUs within a category is significant, the result is an excessively wide confidence interval, a smaller value of \(\alpha\) and unjustified discounting of the importance of the prior. This effect can potentially explain unusually small values of \(\alpha\) that were obtained from the “synthesis data.”

The Table 1 shows variability within a category based purely on the MTBF provided in MADS. This should be compared with the Table 2 that is reproduced the results presented by ISS. It can be observed that for the electrical and electronic components the numbers from Table 1 are reasonably close to the numbers from the “syntheses” set of data in the Table 2, showing that at least for these two categories the ratio between the 95 percent and median values for failure rate can be attributed to the grouping effects.

Table 2. Deriving α Based on Fisher & Price Report Data Taken from Slide 5 Estimation of Prior Distribution Parameter α Used in Bayesian Methodology-2 September 15th 2005, AI# 103 update16

The Table 1 shows variability within a category based purely on the MTBF provided in MADS. This should be compared with the Table 2 that is reproduced the results presented by ISS. It can be observed that for the electrical and electronic components the numbers from Table 1 are reasonably close to the numbers from the “syntheses” set of data in the Table 2, showing that at least for these two categories the ratio between the 95 percent and median values for failure rate can be attributed to the grouping effects.

16 Ibid.
Title: New Method for Updating Mean Time Between Failure for ISS Orbital Replaceable Units

Document Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description of Revision</th>
<th>Author</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Initial Release</td>
<td>Principal Engineer’s Office</td>
<td></td>
</tr>
</tbody>
</table>