Fact Sheet

Text Size

Coarsening in Solid Liquid Mixtures-2 (CSLM-2)


Overview | Description | Applications | Operations | Results | Publications | Imagery

Experiment Overview

This content was provided by Peter W. Voorhees, Ph.D., and is maintained in a database by the ISS Program Science Office.

Brief Summary

Coarsening in Solid Liquid Mixtures-2 (CSLM-2) investigates the rates of coarsening of solid particles embedded in a liquid matrix. During this process, small particles shrink by losing atoms to larger particles, causing the larger particles to grow (coarsen) within a liquid lead/tin matrix. This study defines the mechanisms and rates of coarsening that govern similar processes that occur in materials such as turbine blades, dental amalgam fillings, aluminum alloys, etc.

Principal Investigator(s)

  • Peter W. Voorhees, Ph.D., Northwestern University, Evanston, IL, United States
  • Co-Investigator(s)/Collaborator(s)

  • Amber Geneau, Northwestern University, Evanston, IL, United States
  • Developer(s)

    ZIN Technologies Incorporated, Cleveland, OH, United States

    Sponsoring Space Agency

    National Aeronautics and Space Administration (NASA)

    Sponsoring Organization

    Human Exploration and Operations Mission Directorate (HEOMD)

    ISS Expedition Duration:

    April 2003 - September 2010

    Expeditions Assigned


    Previous ISS Missions

    CSLM-1, a precursor to CSLM-2, was conducted on STS-83 and STS-94. CSLM-2 was conducted during ISS Expedition 7. CSLM-2 was conducted during ISS Increments 16 and 17. CSLM-2R with low volume fraction samples was conducted during Increments 23 and 24.

    ^ back to top

    Experiment Description

    Research Overview

    • CSLM-2 is a materials science experiment designed to study the rate at which particles of tin suspended in a liquid comprised of molten tin/lead alloy increase in size; a process called coarsening.

    • CSLM-2 takes advantage of the microgravity environment on the International Space Station (ISS) to prevent the tin particles from rising to the top of the mixture as well as to eliminate convection in the tin/lead mixture, which can influence coarsening.


    In an effort to reduce the total interfacial area per volume, two-phase mixtures undergo coarsening wherein large particles grow and small particles shrink. The process occurs via a diffusive mass transfer from small particles to large particles; thus, it is important for the particles to remain stationary in the matrix phase.

    Materials containing a few large particles rather than many small particles can be structurally weaker; thus, the coarsening process affects the properties of many materials; such as aluminum alloys. To study this process in a system that can be directly compared to theory, investigators employ a two-phase solid-liquid mixture. Unfortunately, on Earth, the solid Sn-particles sediment to the top of the sample. Such a non-uniform distribution of particles is not observed in solid alloys or assumed in theory. Performing the experiments in space will allow investigators to study the coarsening process in a manner that can be directly compared to theory and other two-phase alloys.

    CSLM-2 samples are processed inside the Sample Processing Unit (SPU), which has a large cylindrical sample chamber. After a sample is processed, pressurized water is pumped into the chamber to quench the sample, cooling it for removal. This system can quench the sample from 185°C (the temperature required to form the solid-liquid mixture and initiate coarsening in tin-lead (Sn-Pb) samples) to 120°C in only 6 seconds.

    The Electronics Control Unit (ECU) provides power and the software that controls all stages of processing. Parameters and status are displayed on the ECU's LCD screen. The ECU controls the temperature inside the SPU sample chamber and monitors and records the sample's temperature. The quenching stage can be initiated automatically or controlled manually by the crew. A base plate attaches the SPU and ECU to the Microgravity Science Glovebox (MSG) work volume floor.

    ^ back to top


    Space Applications

    In any mixture that contains particles of different sizes, the large particles tend to grow while the smaller particles shrink in a process called coarsening. Tiny oil droplets coalescing into a large blob are one illustration, but the process occurs in solids as well. Coarsening occurs on Earth during the processing of any metal alloy and thus the coarsening process affects products from dental fillings to turbine blades. Since the properties of an alloy are linked to the size of the particles within the solid, coarsening can be used to strengthen materials. This is the case with the majority of aluminum alloys used commercially today. Conversely, if the coarsening process proceeds too long the material can weaken. This occurs in jet turbine blades and is one of the reasons why turbine blades must be replaced after a certain number of hours of service. Thus developing accurate models of the coarsening process is central to creating a wide range of new materials from those used in automobiles to those used in space applications. The results of previous experiments performed on the Shuttle have done just that. These models have been incorporated into a computer code that is being used to design many new materials, including materials of importance to NASA's spaceflight program. Solid-liquid systems are ideal systems to study this coarsening process. However, gravity can induce particle sedimentation and thus hamper the studies of coarsening in these mixtures on Earth. The microgravity environment of the Space Station allows scientists to study the process of coarsening with reduced interference from the sedimentation that occurs on Earth.

    Earth Applications

    On Earth, materials that contain pores created and trapped during solidification degrade properties and cause a distinct weakening in the overall structure of the cast product. Determining what causes these problems will lead to the development of improved manufacturing processes for materials.

    ^ back to top


    Operational Requirements

    CSLM-2 will be conducted inside the sealed MSG work volume. The crew must load and initiate each run. Quenching can be initiated manually. Data captured by the ECU is transferred to the MSG laptop for storage and downloading to the ground-based researchers. The samples are a mixture consisting of Sn (tin)-rich particles in a Pb-Sn liquid, a mixture that has a low sintering temperature and a high coarsening rate; making it perfect for studying Ostwald ripening.

    Operational Protocols

    The crew will set up the CSLM-2 hardware and test it before running the first sample. The sample runs are initiated using toggles on the ECU. Once started, the experiments run autonomously. When the sample is completed, the crew will download data from the ECU to the MSG laptop and switch samples by removing the SPU sample chamber and replacing it with a new one. The processed sample chambers are stored until they can be returned to Earth by Shuttle. The hardware is removed from the MSG work volume and stowed after all the runs have been completed. On Earth, the researchers will study each sample for particle size distribution, particle morphology, matrix structure, and particle crystallographic orientation.

    ^ back to top

    Results/More Information

    Samples from CSLM-2 that were processed during Increment 7 were not able to be returned to Earth in time for evaluating the results. Although the data was lost, engineering data collected on equipment function can benefit subsequent experiments. The CSLM-2 high volume fraction samples from Increment 16 and 17 were successfully processed and returned for analysis during 2008. The CSLM-2R low volume fraction samples were successfully processed during Increment 23 and 24 and returned on Shuttle flight STS-133/Flight ULF-5 in March of 2011 and are currently under analysis at Northwestern University. Preliminary analysis of the low volume fraction samples indicates that the furnaces performed as planned. We are continuing to section the other samples to determine if this is case for all the volume fractions processed. Recent results show that the particle size distributions for a 30% volume fraction of coarsening phase is very close to that predicted by theory. The particle spatial distribution functions appear different, perhaps due to the nonspherical shape of the particles that are present at this high volume fraction. Analysis of both the low and high volume fraction samples is continuing.

    ^ back to top

    Results Publications

    ^ back to top

    Ground Based Results Publications

    ^ back to top

    ISS Patents

    ^ back to top

    Related Publications

      Thomson JR, Casademunt J, Drolet F, Vinals J.  Coarsening of solid-liquid mixtures in a random acceleration field. Physics of Fluids. 1997; 9(5): 1336-1343.
      Alkemper J, Snyder V, Voorhees PW..  The development of spatial correlations during Ostwald ripening: a test of theory. Acta Metall. 2000; 48: 2689.
      Alkemper J, Snyder V, Akaiwa N, Voorhees PW..  The Dynamics of Late-Stage Phase Separation: A Test of Theory. Physical Review Letters. 1999; 82: 2725.
      Kammer D, Genau A, Frey CA, Voorhees PW., Duval W, Hawersaat R, Hickman JM, Hall DG, Lorik T.  Coarsening In Solid-Liquid Mixtures: A Reflight. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV; 2008 2008-813.
      Kammer D, Genau A, Voorhees PW., Duval W, Howersatt R, Lorik T.  Coarsening in Solid-Liquid Mixtures II: ISS Results. 47th Aerospace Sciences Meeting and Exhibit, Orlando, FL; 2009 2009-0616.
      Ratke L, Seyhan I, Bender W, Voorhees PW..  Ostwald Ripening of Solid-Liquid Pb-Sn Dispersions. Metallurgical and Materials Transactions. 1996; 27A: 2470 - 2478.
      Rowenhurst DJ, Kuang JP, Thorton K, Voorhees PW..  Three-dimensional analysis of particle coarsening in high volume fraction solid-liquid mixtures. Acta Materialia. 2006; 54: 2027-2039.
      Alkemper J, Snyder V, Voorhees PW..  Coarsening in Solid-Liquid Mixtures (CSLM). NASA Microgravity Materials Science Conference; 1999 655-660.

    ^ back to top

    Related Websites
  • NIH BioMed-ISS Meeting, 2009—CSLM-2
  • NIH BioMed-ISS Meeting Video Presentation, 2009—CSLM-2
  • ISS Research Project-CSLM-2
  • Coarsening in Solid-Liquid Mixtures Experiment
  • ^ back to top


    image NASA Image: ISS007E10466 - Side view of the CSLM-2 hardware (sample holder) inside the Microgravity Science Glovebox (MSG) facility on ISS Expedition 7.
    + View Larger Image

    image NASA Image: ISS007E10472 - Front view of the CSLM-2 hardware (Sample Processing Unit and the Electronics Control Unit) following setup in the MSG before operation on ISS Expedition 7.
    + View Larger Image

    image NASA Image: ISS016E036416 - NASA astronaut Garrett Reisman, Expedition 16/17 flight engineer, works at the MSG located in the Columbus laboratory of the ISS with the CSLM-2 investigation.
    + View Larger Image

    Information provided by the investigation team to the ISS Program Scientist's Office.
    If updates are needed to the summary please contact JSC-ISS-Program-Science-Group. For other general questions regarding space station research and technology, please feel free to call our help line at 281-244-6187 or e-mail at JSC-ISS-Payloads-Helpline.