International Caenorhabditis elegans Experiment First Flight-Muscle Proteins (ICE-First-Muscle Proteins) - 07.12.17

Overview | Description | Applications | Operations | Results | Publications | Imagery

ISS Science for Everyone

Science Objectives for Everyone
International Caenorhabditis elegans Experiment First Flight-Muscle Proteins (ICE-First-Muscle Proteins) studies the correlation between proteins, muscle growth and endurance in relation to a microgravity environment. C. elegans (nematode worms) are relatively simple organisms that are used as a model for a wide variety of biological processes. The ICE-First investigation is a collaborative effort conducted by scientists from several countries which have the opportunity to work as a team to design related experiments that would produce valuable results for scientists across multiple disciplines.
Science Results for Everyone
Information Pending

The following content was provided by Nicole Buckley, and is maintained in a database by the ISS Program Science Office.
Information provided courtesy of the Erasmus Experiment Archive.
Experiment Details


Principal Investigator(s)
Nicole Buckley, Canadian Space Agency (CSA), Ottawa, Ontario, Canada

Noriaki Ishioka, Japan Aerospace and Exploration Agency, Tsukuba City, Japan
Laurent Segalat, Universite Lyon I, Villeurbanne, France
Catharine A. Conley, Ph.D., Ames Research Center, Moffett Field, CA, United States
M Viso, Centre National d'Estudes Spatiales, Paris, France
Beverly E. Girten, Ph.D., Ames Research Center, Moffett Field, CA, United States
J Vassy, Laboratoire CEMV, Universite Pierre et Marie Curie, Paris, France
Ann Rose, Ph.D., University of British Columbia, Vancouver, British Columbia, Canada

Centre National d'Etudes Spatiales, Toulouse, France

Sponsoring Space Agency
European Space Agency (ESA)

Sponsoring Organization
Information Pending

Research Benefits
Information Pending

ISS Expedition Duration
October 2003 - October 2004

Expeditions Assigned

Previous Missions
The precursor to ICE-First (flown during Expedition 8), BRIC-60/C. elegans, flew on STS-107 (Columbia). Following the break-up of Columbia upon re-entry into the Earth's atmosphere, the samples were located among debris in East Texas and returned to NASA.

^ back to top

Experiment Description

Research Overview

  • The first part of ICE-First-Muscle Proteins studies a protein involved in muscle contraction and tries to establish if there is a link between this protein and muscle atrophy. The second part of this investigation studies a defective protein produced by a mutated gene in the common form of muscular dystrophy, a group of disorders that involve muscle weakness and loss of muscle tissue that gets worse over time.

  • An essential gene for long-term survival and fertility in the nematode worm is studied to determine how the gene expression differs on Earth compared to the weightlessness of space.

  • This investigation provides a unique opportunity for scientists from several countries to work as a team to design experiments that would produce valuable results for scientists across several various disciplines.

ICE-First-Muscle Proteins is one of several experiments that investigates the effects of spaceflight on a model organism of the nematode worm family (Caenorhabditis elegans) and aims to develop links to human physiology in space. The organism chosen for this study is known to be able to mate, reproduce and develop apparently normally during space flight. Researchers have long tried to figure out why long-term spaceflight can lead to weakened muscles in human astronauts. Many agree that microgravity conditions somehow reduce the rate at which new muscle proteins and fibers are created or synthesized. C. elegans is a round worm or nematode (Phylum Nematoda) measuring around 1mm and is found naturally in soil. Its body is composed of 959 cells and includes complete reproductive, nervous, muscular, and digestive systems. C. elegans are hermaphrodites (displaying two genders and possessing the ability of self fertilization). Its life span is about 2-3 weeks; although, concerning the liquid medium used for this study at 25°, the life cycle is around 5 days. The entire genome has been sequenced and consists of 97 million base pairs (compared to the 3,000 million found in the human genome) and around 20,000 genes (compared to the 30,000 that humans have) and an entire library of well characterized mutants are available. C. elegans has been used as a model system for various medical pathologies and was the subject of the 2002 Nobel Prize in Medicine or Physiology because the process of programmed cell death or apoptosis was first discovered while studying C. elegans development. Microgravity has an important impact on muscle physiology and growth. The muscle atrophy experienced by crewmembers while in space is well documented. C. elegans have muscles which are analogous to vertebrates including humans. In this study, the focus is on two sets of genes coding for muscle function. First, scientists will investigate the localization of Tropomodulin proteins (capping proteins found mostly in muscle cells) and other contractile proteins of muscle. In mammals, Tropomodulins display altered expression in response to muscle under- or over-loading. Worms have two Tropomodulin genes, thus the data obtained would provide preliminary results concerning the appropriateness of worms as a model for Tropomodulin involvement in muscle atrophy (Strain CC1). Second, scientists analyze the phenotype of C. elegans mutant for genes encoding protein involved in muscle survival. One such protein is Dystrophin, the product of the gene mutated in DuchĂȘne Muscular Dystrophy, an inherited disease in which patients suffer from a progressive muscle necrosis.

^ back to top


Space Applications
The possibilities for longer-term spaceflights are increasing. These types of experiments give scientists an insight into the effect that the environment of space has on organisms down to the genetic level. This can help scientists to better understand the adverse effects that could be experienced such as muscle atrophy.

Earth Applications
With certain genetic techniques used in this experiment, highlighting the genes where differences occur in comparison to Earth data can further provide scientists with a direction of where to develop research in the future, either on similar organisms or humans. By understanding fundamental processes in C. elegans, scientists can better understand the human counterparts. This study can lead to a further understanding of muscle physiology and growth.

^ back to top


Operational Requirements and Protocols
ICE-First-Muscle Proteins samples are placed in either the Kubik Topaz or Kubik Amber incubator before and after the launch. Filming is required immediately upon the arrival on Earth for later evaluation. The samples are required to stay either frozen or refrigerated until their return to scientists in Toulouse, France two days prior to landing.
The C. elegans samples are transported to the launch pad in Baikonur, transferred into the Kubik Topaz (incubator with microgravity plate) and kept at 18 degrees C. Three days after the launch, 3 samples are transferred into the Kubik Amber (incubator with centrifuge), while the other five samples remain in Kubik Topaz. On the last flight day, four of the C. elegans samples are injected with a fixative by the crew and all of the samples are placed in Kubik Topaz on the Soyuz and returned to Earth. Upon return to Earth, the containers are filmed to evaluate the behavior of the C. elegans following space flight. The small bags containing the culture of the worms are either frozen or refrigerated until they are returned to their respective principal investigators for detailed analysis, whereby scientists will study the effect of microgravity on other mutations affecting C. elegans muscle survival (including proteins MyoD, perlecan and titin). The effects of microgravity will be analyzed by immunocytochemistry (a technique used to assess the presence of a specific protein or antigen in cells) and microscopy.

^ back to top

Decadal Survey Recommendations

Information Pending

^ back to top

Results/More Information

^ back to top

Results Publications

^ back to top

Ground Based Results Publications

^ back to top

ISS Patents

^ back to top

Related Publications

    Zhao Y, Johnsen RC, Baillie D, Rose A.  Worms in Space? A Model Biological Dosimeter. Gravitational and Space Biology. 2005; 18(2): 11-16.

^ back to top

Related Websites

^ back to top



This image shows a magnified image of 2 adult worms and 1 juvenile worm crawling in the liquid media that was used for the ICE-First mission.

+ View Larger Image


Photo of a vented EC1 along with culture bags containing C. elegans. The culture bags are housed inside of vented EC1s.

+ View Larger Image

image Photo of Kubik Amber and Kubik Topaz incubators ready for flight.
+ View Larger Image