Portable Astroculture Chamber (PASC) - 07.19.17

Summary | Overview | Operations | Results | Publications | Imagery

ISS Science for Everyone

Science Objectives for Everyone
Portable Astroculture Chamber (PASC) is a derivative of the Astroculture series of space flight hardware designed to meet the requirements of flying to the International Space Station (ISS). Understanding the effects of gravity on plant life is essential in preparation for interplanetary exploration. Being able to produce high energy, low mass food sources during space flight will enable maintenance of crew health during long duration missions while having a reduced impact on resources necessary for long distance travel. Applications of a plant growth chamber include using plants as components of regenerative life support systems for travel to the moon or Mars.
Science Results for Everyone
Information Pending

The following content was provided by , and is maintained in a database by the ISS Program Science Office.
Facility Details


Facility Manager(s)
Information Pending

Facility Representative(s)
Information Pending

University of Wisconsin at Madison, Wisconsin Center for Space Automation and Robotics, Madison, WI, United States

Sponsoring Space Agency
National Aeronautics and Space Administration (NASA)

Sponsoring Organization
Human Exploration and Operations Mission Directorate (HEOMD)

ISS Expedition Duration

Expeditions Assigned
Information Pending

Previous Missions
ADVASC the precursor to PASC flew on ISS Expeditions 2, 4 and 5.

Information Pending

^ back to top

Facility Description

Facility Overview

  • The International Space Station (ISS) provided an ideal laboratory for growing plants and studying the influence of gravity on plants that evolved on Earth.

  • PASC is portable, small and light and consumes minimal power. PASC consists of two identical growth chambers with the objective of growing plants (approximate growth cycle is 75 days).
PASC is the newest and smallest development in the Astroculture? line of payloads designed to operate on the International Space Station (ISS). The objective of these Astroculture? payloads is to determine requirements for successful growth of agricultural crops in microgravity. PASC features energy-conserving red and blue Light Emitting Diodes (LEDs), which give a suitable light spectrum for plants within its growth chamber. This same efficient design has been used effectively on previous Astroculture? payloads. The PASC payload will also limit the ISS crew interaction by requiring only water and nutrient addition to the trays where roots are growing. The ambient air within the ISS's cabin will be used to control the temperature and humidity inside the growth chamber, further reducing power usage. The chamber has four transparent sides to allow easy viewing for photography to document the growth of plants within each chamber.

The objectives of the PASC investigation are: to determine whether plants are able to complete their life cycle (namely, from seed to seed) in a microgravity environment and to determine what the minimum requirements of a plant growth chamber are. Successful experimentation will provide valuable information concerning vegetable crop production in space. When the plants grown in the PASC are mature, the seeds will be harvested and brought back to earth for analysis.

Each PASC has a growing space which accommodates a shoot area of 252 cm2, shoot height of 17.8 cm, root area of 110.7 cm2 and root height of 3.3 cm. Water and nutrient delivery will occur by capillary mass transfer through rooting matrix via porous materials. The EXPRESS Rack system will allow for real-time data telemetry, remote commanding, and video (NTSC format) downlink. The crew will activate and deactivate PASC, as well as performing several maintenance activities as needed. Each chamber transmits health & status data and video to the ground and extracted seeds are returned to Earth.

^ back to top


Facility Operations

  • Payload installation and checkout.

  • The crew will monitor PASC every other day.

  • There will be periodic removal of plant samples from the growth chamber.

^ back to top

Decadal Survey Recommendations

Information Pending

^ back to top
Results/More Information

Results Publications

^ back to top

Ground Based Results Publications

^ back to top

ISS Patents

^ back to top

Related Publications

    Zhou W.  Advanced AstrocultureTM Plant Growth Unit: Capabilities and Performances. 35th International Conference on Environmental Systems, Rome, Italy; 2005

    Link BM, Wagner ER, Cosgrove DJ.  The effect of a microgravity (space) environment on the expression of expansins from the peg and root tissues of Cucumis sativus. Physiologia Plantarum. 2001; 113(2): 293-300. PMID: 11710397.

    Link BM, Cosgrove DJ.  Analysis of peg formation in cucumber seedlings grown on clinostats and in a microgravity (space) environment. Journal of Plant Research. 1999; 112(4): 507-516. DOI: 10.1007/PL00013907.

    Zhou W, Zeltner W, Meyers RA.  Advanced Photocatalytic Ethylene Degradation Technology to Support Plant Research in the Enclosed Environment. SAE Technical Paper. 2003; 2003-01-2610. DOI: 10.4271/2003-01-2610.

^ back to top

Related Websites

^ back to top


image PASC hardware unwrapped. Image provided by Wisconsin Center for Space Automation and Robotics (WSCAR).
+ View Larger Image