A Study of Radiation Doses Experienced by Astronauts in EVA (EVARM) - 11.22.16

Overview | Description | Applications | Operations | Results | Publications | Imagery

ISS Science for Everyone

Science Objectives for Everyone
EVA Radiation Monitoring: A Study of Radiation Doses Experienced by Astronauts in EVA (EVARM) characterized the radiation doses experienced by crewmembers during extravehicular (spacewalk) activities. The data determined which parts of the human body are exposed to the highest radiation levels so that routine dosage monitoring in future missions can be done on the appropriate parts of the human body.
Science Results for Everyone
Researchers put monitoring badges in the pockets of spacesuits to measure radiation exposure to various body parts during extravehicular activity, or spacewalks. The results show that doses during spacewalks are only slightly higher than inside the station. Spacecraft materials can act as a shield against radiation, so proper positioning of the spacecraft can dramatically reduce the dose received during spacewalks. The spacesuit also reduces the amount and type of radiation dose.  However, astronauts outside the station still received more radiation to the skin, eyes, and blood-forming organs than being inside the spacecraft's protective shielding.

The following content was provided by Ian Thomson, and is maintained in a database by the ISS Program Science Office.
Experiment Details


Principal Investigator(s)
Ian Thomson, Thomson and Nielson Electronics, Ottawa, Ontario, Canada

Information Pending

Canadian Space Agency (CSA), Ottawa, Ontario, Canada
NASA Johnson Space Center, Flight Research Management Office, Houston, TX, United States

Sponsoring Space Agency
Canadian Space Agency (CSA)

Sponsoring Organization
Information Pending

Research Benefits
Information Pending

ISS Expedition Duration
December 2001 - December 2002; November 2002 - May 2003

Expeditions Assigned

Previous Missions
Experiments using MOSFET, a Russian dosimeter similar to EVARM, were conducted in the 1990s on the Russian biosatellites BION-10 and BION-11 as well as on Mir.

^ back to top

Experiment Description

Research Overview

  • EVA Radiation Monitoring: A Study of Radiation Doses Experienced by Astronauts in EVA (EVARM) characterizes the radiation doses received by different parts of a crewmembers' body (e.g., skin, eyes, and blood-forming organs) during an extra vehicular activity (EVA) using a new type of dosimeter that consists of three electronic badges worn on the head, torso, and legs.

  • The doses will be analyzed with respect to the time and position of the EVA as well as the orbit, altitude and attitude of the ISS.

A Study of Radiation Doses Experienced by Astronauts in EVA (EVA radiation monitoring (EVARM)) was designed to quantify the radiological dose received by astronauts while performing EVAs at the ISS. Extravehicular mobility units (EMUs, or spacesuits), worn by spacewalking astronauts, provide less shielding from radiation than the spacecraft. This means that spacewalkers are exposed to higher radiation levels during EVAs than at other times on orbit. When planning EVAs, teams take into account mission parameters, estimated duration, ISS altitude and inclination plus information on space weather conditions (e.g., solar activity, geomagnetic field conditions, proton flux) anticipated for that day.

In addition to specific lifetime radiation limits, medical standards specify that radiation doses achieved by astronauts should be as low as reasonably achievable (ALARA). To create new and improved shielding for EVAs, researchers must know the type and flux of radiation inside the EMU. EVARM investigates the dose received by different parts of the body (skin, eyes, blood-forming organs) during an EVA by measuring dose rate, based on the time and position of EVAs as compared to the orbit, altitude, and attitude of the ISS.

As part of EVARM, spacewalkers wore dosimeters placed in small pockets along the EMU undergarments. Two dosimeters were placed either inside the thermal comfort undergarment or the liquid-cooled ventilation garment, one dosimeter was placed around the calf to measure absorbed dose to skin, and another dosimeter was worn above the eye inside the communications carrier assembly. EVARM used tiny metal oxide semiconductor field effect transistor (MOSFET) dosimeters, a 0.04-in2 silicon chip placed on a badge made of aluminum. When an MOSFET is exposed to ionizing radiation, a positive charge builds up on the silicon surface, creating a negative shift in threshold voltage. Measurements were taken by comparing the change in threshold voltage with the radiation dose, which was recorded using a photodiode. New dosimeters were worn by the crew during each EVA.

^ back to top


Space Applications
A complete understanding of the space radiation environment and the potential radiation doses astronauts receive on various parts of their bodies allows space agencies worldwide to plan mission activities such as EVAs, with crew long-term health in mind. EVARM and other space radiation research provide the data necessary to create models and issue recommendations for space radiation protection.

Earth Applications
Shielding and countermeasures developed for the space program can also be used on Earth to protect people who work in high-radiation areas.

^ back to top


Operational Requirements and Protocols
The EVARM experiment includes twelve dosimeter badges-three for each crewmember plus a spare set. The crew will wear the dosimeters during all EVAs. The Reader unit, which turns the measurements into usable data, is powered by the HRF-1 via a 28 Vdc cable. When not in use, the dosimeter badges are stored in the lid of the Reader which is stowed in the HRF-1. Each MOSFET dosimeter is powered by ten 30 Vdc batteries.

In addition to ground-based training on the placement of dosimeters and data transfer, the crew will also take a self-guided, computer-based refresher course while on Station. The dosimeters and Reader unit are calibrated on the ground and should not require additional calibration while on Station.
The Reader unit must be powered-up for 15 minutes before use. The badges are inserted into their appropriate slots in the Reader unit before an EVA to determine a baseline for each crew member. The Reader unit is powered-down for the duration of the EVA and then repowered at the conclusion of the EVA. The post-EVA data is transferred from the badges to the Reader unit. The Reader unit translates the dosimeter information into usable data and then transfers that data to the HRF-1 laptop. The HRF-1 stores the data until it can be downlinked to the Canadian Space Agency's Payload Mission Support Center in Saint-Hubert, Quebec. The crew also takes monthly background radiation readings which allows the investigator to compare the dose received during an EVA with the general radiation environment inside the Station. The information, when available, is downloaded once a week.

^ back to top

Decadal Survey Recommendations

Information Pending

^ back to top

Results/More Information

For the EVARM investigation, ten complete sets of data were collected between February and November of 2002. These badges were compared to radiation monitors already on the ISS as well as, the European Space Agency's Space Environment Information System (SPENVIS).

The results from EVARM have shown that EVA doses are elevated from those inside the ISS, but not significantly. In addition, this time period recorded doses during a time of increased geomagnetic activity (October/November 2002). It was determined that during this event doses to EVA participants were increased due to elevated levels of electrons in Earth orbit. These electrons are easily shielded by spacecraft materials and thus not measured inside the ISS. Fortunately, proper positioning of the spacecraft can dramatically reduce the radiation field encountered during EVA missions. A significant finding was that a single detector placed at the astronaut's torso was not sufficient to accurately determine organ doses. Results show that the MOSFET detectors are accurate as compared with other monitoring equipment; however, the use of this battery device may present problems in the EVA environment. (Evans et al. 2009)

^ back to top

Results Publications

    Shamim A, Arsalan M, Roy L, Shams M, Tarr G.  Wireless dosimeter: system-on-Chip versus system-in-package for biomedical and space applications. IEEE Transactions on Circuits and Systems-II: Express Briefs. 2008 July; 55(7): 643-647. DOI: 10.1109/TCSII.2008.921573.

    Reynolds RJ, Delclos GL, Cooper SP, Rahbar MH.  Radiation Dosimetry in Space: A Systematic Review. Webmed Central Environmental Medicine. 2014 March 10; 5(6): WMC004578. DOI: 10.9754/journal.wmc.2014.004578.

^ back to top

Ground Based Results Publications

^ back to top

ISS Patents

^ back to top

Related Publications

    N.  Radiation and the International Space Station: Recommendations to Reduce Risk. Washington, DC. Washington, DC: Radiation and the International Space Station: Recommendations to Reduce Risk; 2000.

    Lewis BJ, Bennett LG, Green AR, McCall MJ, Ellaschuk B, Butler A, Pierre MC.  Galactic and solar radiation exposure to aircrew during a solar cycle. Radiation Protection Dosimetry. 2002; 102(3): 207-227.

    Badhwar GD.  The radiation environment in low-Earth-orbit. Radiation Research. 1997; 148: S3-S10.

    Thomson I.  EVA dosimetry in manned spacecraft. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis. 1999; 430(2): 203-209.

    Badhwar GD, Watts JW, Cleghorn TF.  Radiation dose from reentrant electrons. Radiation Measurements. 2001; 33(3): 369-372.

    Kiefer J.  Space radiation research in the new millenium--From where we come and where we go. Physica Medica: European Journal of Medical Physics. 2001; 17(Suppl 1): 1-4.

    Measurements (NCRP) N.  Guidance on Radiation Received in Space Activities: Recommendations of the National Council on Radiation Protection and Measurements. Bethesda, MD: Guidance on Radiation Received in Space Activities: Recommendations of the National Council on Radiation Protection and Measurements; 1989.

^ back to top

Related Websites
Life Sciences Data Archive
Space Radiation Health Project
NASA Fact Sheet
Canadian Experiment Keeps Astronauts Safe (Space Daily, Oct. 22, 2001)

^ back to top


image A picture of the EVARM hardware. This device records and processes data sent by radiation detectors in the spacesuits of astronauts during EVA. Image courtesy of Canada Space Agency.
+ View Larger Image

image NASA Image: ISS005E22017 - ISS Expedition 5 Commander Valery Korzun during an EVA. The EVARM experiment measures the amount of radiation that astronauts absorb during EVA.
+ View Larger Image

NASA Image: ISS006E48915 - An open EVA Radiation Monitoring (EVARM) Kit (Bar Code: HRF01481J) on Expedite the Processing of Experiments to the Space Station (EXPRESS) rack. This kit is used to measure radiation dosage encountered by the eyes, internal organs and skin during specific spacewalks. Photo was taken during Expedition 6 on the International Space Station (ISS).

+ View Larger Image