Commercial Generic Bioprocessing Apparatus - Synaptogenesis in Microgravity (CGBA-SM) - 11.22.16

Overview | Description | Applications | Operations | Results | Publications | Imagery

ISS Science for Everyone

Science Objectives for Everyone
This investigation examined how microgravity affects nervous system development in fruit flies, using commercial scientific hardware that can support many biological laboratory investigations adapted to operate in space and which require temperature controls from 4°C to 37°C. The results from this investigation may give insight on how microgravity affects human nervous system development. This investigation was part of a suite of experiments that used the CGBA hardware.
Science Results for Everyone
Does microgravity affect human nervous system development, specifically formation of synapses, or connections between neurons?  This investigation sought to answer that question, of particular interest for crewmembers on long-duration space missions and for potential treatments of various diseases and aging disorders on Earth. While preliminary post-flight results  indicated that the Commercial Generic Bioprocessing Apparatus operated properly, two containers experienced unexpected drifts above planned temperatures. While ground tests were completed for comparison to the in-flight samples, final data analysis has not been released.

The following content was provided by Haig Keshishian, Ph.D., and is maintained in a database by the ISS Program Science Office.
Experiment Details


Principal Investigator(s)
Haig Keshishian, Ph.D., Yale University, New Haven, CT, United States

Information Pending

BioServe Space Technologies, University of Colorado, Boulder, CO, United States

Sponsoring Space Agency
National Aeronautics and Space Administration (NASA)

Sponsoring Organization
Human Exploration and Operations Mission Directorate (HEOMD)

Research Benefits
Information Pending

ISS Expedition Duration
September 2000 - November 2000

Expeditions Assigned

Previous Missions
CGBA-SM has previously flown on STS-93.

^ back to top

Experiment Description

Research Overview

  • The impact of microgravity on the nervous system is of concern for crewmembers who participate in long duration space missions.

  • Embryonic fruit flies, Drosophila melanogaster, will be used to observe the development of the nervous system and how they attach to muscle fibers.

  • This investigation may lead to a better understanding of how microgravity effects developing biological systems in addition, the results may lead to new treatments of various types of diseases and aging disorders.

CGBA-Synaptogenesis in Microgravity (SM) used the CGBA hardware to examine how microgravity affects the neuronal development of fruit files, Drosophila melanogaster. This investigation used D. melanogaster embryos and larvae to observe how nerves that control movement navigate through an embryonic central nervous system and attach to muscle fibers. Investigators observed how the synapses, the junction between two nerve cells where signals are transferred from one nerve to another, developed both during and after the embryonic stage.

The Commercial Generic Bioprocessing Apparatus (CGBA) provided automated processing for biological experiments. The CGBA can contain up to eight containers that house the experiments. Each container is programmable and temperature controlled. For this experiment, the CGBA hardware included the isothermal containment module (ICM v.3) and seven Gas Exchange (GE) - Group Activation Packs (GAP). To control the on orbit development of D. melanogaster, the GE-GAPs were automatically operated by the ICM, through preprogrammed temperature profiles.

The GE-GAPs have an aluminum shell that enabled heat transfer and a gas-permeable membrane covering the openings in the wall allowing passive gas exchange for the experimental samples. The ICM provided highly-accurate temperature control between 4 degrees C and 37 degrees C. Eight individually-controlled temperature areas are available inside the ICM and the surrounding container controls the temperature gradients. It is fully equipped with data, video, and telemetry electronics to allow telescience remote operation. The ICM v. 3 can be equipped with a number of bioprocessing inserts, including custom configurations.

^ back to top


Space Applications
Understanding how microgravity affects the nervous system can lead to countermeasures that can be applied during long duration space flights.

Earth Applications
This investigation will examine how nerves develop and how they attach to muscle fibers. This may lead to an understanding of how various types of nervous system disease development and new treatments could be created from this type of research.

^ back to top


Operational Requirements and Protocols
CGBA-SM used seven GE-GAPs housed in the CGBA. Each of the GE-GAPs contained eight 100mm Petri dishes. Of the eight Petri dishes, seven contained the D. melanogaster larvae sample on agar. The eighth Petri dish was used to house StowAway, a temperature-recording device. The samples were returned to the ground team for analysis.
CGBA-SM was designed to operate automatically, through pre-programming, while on orbit. GE-GAPs were launched with a temperature of 11.5°C. Once in orbit the temperature was automatically raised to 18°C to initiate fruit fly development. The deactivation of the samples occurred at different times for the GE-GAPs, in order to preserve specific points in development. For deactivation, the temperature was decreased to 11.5°C.

^ back to top

Decadal Survey Recommendations

Information Pending

^ back to top

Results/More Information

Preliminary results based on the 30-day Postflight Report, provided by Dr. David Klaus of BioServe Space Technology, indicated that indicated that although the CGBA hardware operated successfully, there were unexpected temperature drifts above the planned temperature in two of the seven containers. While ground tests were completed for comparison to the in-flight samples, final data analysis has not been released.

^ back to top

Results Publications

^ back to top

Ground Based Results Publications

^ back to top

ISS Patents

^ back to top

Related Publications

^ back to top

Related Websites
A Modular Suite of Hardware Enabling Space Flight Cell Culture Research - Commercial Generic Bioprocessing Apparatus (CGBA)
BioServe Space Technologies
NASA Fact Sheet

^ back to top


image The Commercial Generic Bioprocessing Apparatus (CBGA) Isothermal Containment Module version 3 (ICM v.3) with eight containers. The ICM v.3 provides the computer and thermal control for the samples. Image courtesy of Colorado University.
+ View Larger Image

image The adult Drosophila melanogaster, a species of fruit fly, used in the CGBA-SM investigation. Image courtesy of Colorado University.
+ View Larger Image