The Atmospheric Ionizing Radiation (AIR) Project – Preliminary Results for Neutron Spectra and Ionization Rate

Paul Goldhagen, M. Reginatto, W. Van Steveninck
U.S. Department of Energy Environmental Measurements Laboratory

NASA Langley Research Center

10th Annual Space Radiation Health Investigators’ Workshop
June 13-16, 1999
Brookhaven National Laboratory, Upton, NY
Radiation Protection for Air Crews

- High-energy mixed radiation from cosmic rays
 - Roughly half of effective dose from neutrons
 - Large uncertainties in neutron spectrum and H

- Continual exposure of large group
 - 167,000 air crew members in U.S.
 - Civil aircrew working hours aloft ~ 500-1000 h / year
 - Air crews are one of the *most exposed* groups of radiation workers

- Radiation protection limits going down

- New high-altitude civil aircraft designs (?)
Dose Rates from Galactic Cosmic Rays in the Atmosphere Depend on

- **Altitude** - Shielding by air
 - 1030 g/cm² at sea level, 55 g/cm² at 20 km (66,000 ft)
 - Dose equivalent rate, H, at 20 km ~500 × H at sea level

- **Latitude** - Shielding by geomagnetic field
 - Bends slower particles back into space
 - Effect on H increases with altitude
 - H at poles >6 × H at equator at 20 km

- **Time in Solar Cycle** - magnetic field of solar wind
 - 11-year sunspot cycle: Radiation max at sunspot min
 - Effect on H increases with geomagnetic latitude & altitude
 - Solar modulation >2 in polar regions at 20 km
Effective Dose vs. Altitude
for Galactic Cosmic Ray Components

Data from O'Brien LUIN-98F calculation at 55.4° N, 120° W

Corresponds to Mars

Effective Dose (µSv h⁻¹)

Altitude (km)

0 5 10 15 20 25

Total
neutrons
photons + electrons
protons
muons
pions

(\(w_R = 2\))

(1000 ft)
Contribution of Various Components to Estimated Dose Equivalent Rate

In Polar Regions During Solar Minimum

<table>
<thead>
<tr>
<th>Quantity</th>
<th>60,000 ft</th>
<th>70,000 ft</th>
<th>80,000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose Rate, D</td>
<td>5.9 - 7.8</td>
<td>6.9 - 9.1</td>
<td>7.4 - 9.7</td>
</tr>
<tr>
<td>(Qi -1)Di : pions</td>
<td>≈.01</td>
<td>≈.01</td>
<td>≈.01</td>
</tr>
<tr>
<td>neutrons</td>
<td>4.5 - 18.0</td>
<td>5.0 - 19.9</td>
<td>5.1 - 20.2</td>
</tr>
<tr>
<td>Z=1 (protons)</td>
<td>≈1.5</td>
<td>≈1.7</td>
<td>≈2.0</td>
</tr>
<tr>
<td>Z=2</td>
<td>≈2.4</td>
<td>≈2.6</td>
<td>≈2.8</td>
</tr>
<tr>
<td>Z>2</td>
<td>0.2 - 0.6</td>
<td>0.6 - 1.7</td>
<td>1.2 - 3.8</td>
</tr>
<tr>
<td>Dose Equivalent Rate</td>
<td>14.5 - 30.3</td>
<td>16.9 - 35.2</td>
<td>18.6 - 38.5</td>
</tr>
<tr>
<td>best estimate</td>
<td>20</td>
<td>23.5</td>
<td>26</td>
</tr>
</tbody>
</table>
Jet Altitude Cosmic Ray Neutron Spectra - Previous Measurements

Neutron Energy (MeV) vs. Count Rate (cm\(^{-2}\)sec\(^{-1}\))

- **Hess '59**
 - 200 g cm\(^{-2}\) (11.75 km), 4.0 GV cutoff

- **Hewitt '78**
 - 190 g cm\(^{-2}\) (12.3 km), 2.4 GV cutoff

- **Korff '79**
 - 70 g cm\(^{-2}\) (18.6 km), polar

- **Nakamura '87 (↔3)**
 - 220 g cm\(^{-2}\) (11.3 km), 10 GV cutoff
Existing Jet-Altitude Cosmic Ray Neutron Spectra

Measured
- Hess 1959, 220 g/cm2 (11.4 km)
- Hewett '78, 190 g/cm2 (12.3 km)
- Korff '79, 70 g/cm2 (18.6 km)

Calculated
- Armstrong '73, 100 g/cm2 (16.3 km)
- Merker '73, 90 g/cm2 (17 km)
The Atmospheric Ionizing Radiation (AIR) Measurements Project

- Collaboration of ~12 laboratories, 6 countries
 - Started by NASA LaRC and EML
- Suite of 14 radiation measuring instruments
- Dedicated flights of NASA ER-2 aircraft
 - Altitudes: 16 - 21 km (53,000 - 70,000 ft) 110 - 50 g/cm²
 - Latitudes: 18°- 60° N over western U.S., Canada, Pacific
 - Each flight 6.5 to 8 hours
 - Multiple flight series over several years of solar cycle
- First flight series successfully completed June 1997
- Measurements benchmark/validate AIR model code

Funded by NASA High Speed Research Program as part of HSCT Environmental Impact studies and by collaborating laboratories
AIR INSTRUMENT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Γ</th>
<th>e⁺</th>
<th>μ⁺</th>
<th>n</th>
<th>p</th>
<th>HZE</th>
<th>Tgt Frag</th>
<th>Particle Ident.</th>
<th>LET or γ</th>
<th>Φ</th>
<th>E</th>
<th>D</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNS (Bonner sph.)</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>TEPCs</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ionization Chamber</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>~</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scintillators</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>~</td>
<td>✓</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particle Telescopes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
</tr>
<tr>
<td>Bubble Detectors</td>
<td>✓</td>
<td>+</td>
<td>~</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNTD, chem. etch</td>
<td></td>
<td>+</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>" electrochem etch</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Al₂O₃ TLDs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>~</td>
<td>~</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDM-303 Dosimeter</td>
<td>✓</td>
<td>+</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEU Experiment</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

✓ - primary particle / quantity
+ - responds
~ - partial response
😊 - complicates primary measurement
Altitude Profiles for 3 AIR Flights

Time after Takeoff (hours)

Altitude (km)

East
South 1
North 2
Ionization Chamber Reading
All Four 6.5-Hour Flights

Time After Takeoff (minutes)

Counts per Minute

North 2
East
South 1
South 2
Predicted and Measured Ionization Rate

Time after Takeoff (minutes)

Ionization Rate (ions/cm² s)

North 2 Flight

EML ion chamber measurement

AIR Model prediction

Paul Goldhagen

Multisphere Neutron Spectrometer (Bonner Spheres)

Set of spherical moderators of different sizes surrounding slow-neutron detectors

Big moderators slow down higher-energy neutrons than small moderators.
Multisphere Spectrometer

Advantages

- Wide energy range (9 - >11 decades)
- Highly sensitive to neutrons, but not gamma rays
- Isotropic response
- Transportable
- Stable response, tried and true

Disadvantages

- Low resolution
- Useful only for uniform, stable or monitored field

To use, need:

- Response functions
- Unfolding
Response Functions of EML
High-Energy Multisphere Neutron Spectrometer

without containers

MCNP / LAHET

Response (Counts cm$^{-2}$ neutron$^{-1}$)

Neutron Energy (MeV)

proton response

Counts

without containers

EML

Paul Goldhagen

RFcans.jnb

6/8/99
Accomplishments

• 5 science flights successfully completed
  June 1997, solar minimum (radiation maximum)

• Full energy range neutron spectrometer developed
  Response functions - calculations, verification experiment
  MAXED unfolding code

• Good data, preliminary results for:
 • Relative ionization rate vs. latitude and altitude

• Full-range neutron spectra measured in an aircraft
  High-altitude (50-110 g/cm²): wide range of latitudes
  Commercial altitudes: one latitude
Conclusions

• Current AIR Model fits relative ionization rate well for all latitudes and altitudes

• AIR neutron measurements will reduce uncertainties in neutron spectrum and effective dose rate
 □ neutron measurements must include correction for protons

• High-energy neutrons are significant
 □ about half of neutron dose equivalent

• AIR measurements can be used to validate cosmic radiation transport codes for Mars

• CR dose calculations for Mars residents should consider
 □ Surface composition - hadron cascades from iron
 □ Low-Z shielding below as well as above/around habitats

• 2nd series of AIR flights would be worthwhile
Thanks

EML: M. Reginatto, W. Van Steveninck, F. Hajnal, F. Raccah

University of Akron: T. Kniss

NASA Ames (Dryden) Research Center: ER-2 liaison staff, scientists, engineers, ground crew, pilots

All the AIR investigators, their collaborators & support people

W. Friedberg, K. Copeland, K. O’Brien, V. Mares, S. Roesler and others
High-Altitude Cosmic Ray Neutron Spectra

Effect of Default Spectrum

EML measurement (preliminary unfoldings)

56 g/cm² (20 km, 66,000 ft),
solar minimum, near polar plateau
AIR ER-2 flight 97-108, 6/13/97, 54° N, 117° W
(corrected for protons)

Using as default spectrum for unfolding:

- **Armstrong '73, HETC-ANISN**
 - 50 g/cm², solar min, 42° NGM

- **Roesler et al. '98, FLUKA**
 - 200 g/cm², 47° N, 11° E, 5/95

Neutron Flu \(\frac{dN}{dE} \) (cm⁻² sec⁻¹)

Neutron Energy (MeV)
High-Altitude Cosmic Ray Neutron Spectra
Effects of Protons and Energy Limit

EML measured neutron spectrum, (preliminary unfoldings)
56 g/cm2 (20 km, 66 kft), solar minimum, near polar plateau
NSMED unfolding

- Blue line: without correction for protons
- Red line: with correction for protons

Same data (without correction for proton effects)

SANDII unfolding cut off at 1 GeV

Default spectrum:
Armstrong '73, HETC-ANISN,
50 g/cm2, 42$^\circ$ NGM, solar min
$x2.34$ for best fit to data
Introduction

AIR Model

• Dose rate empirical formulations
 - air ionization, charged particle stars, 1 to 10 MeV neutrons

• Dose rate equivalent from ICRU 40

• Data set from solar cycle 20 and scaled to the Deep River neutron monitor with the geomagnetic cutoff
Current AIR Model

- Set of scaling and interpolation subroutines
- Data set from solar cycle 20
- Use of the geomagnetic cutoff
- Scaled to the Deep River neutron monitor
- Solar variation with latitude, longitude, altitude, and pressure
Current AIR Model

• Dose rate empirical formulations
 - Air ionization
 - Charged particle stars
 - 1 to 10 MeV neutrons

• Dose rate equivalent
 - ICRU 40
Ultimate AIR Model Purpose

• Accurate prediction of dose and dose equivalent anywhere in the Earth’s atmosphere
• Enable assessment of health risks to flight crew and passengers for airline industry
• Validation model of space radiation transport codes
Calculated High-Altitude Cosmic Ray Neutron Spectra

- **Armstrong '73, HETC-ANISN**
 - 50 g/cm², solar min, 42° NGM
 - x 2.34 for best-fit EML data at above coordinates

- **O'Brien, LUIN-97 (FAA, CARI)**
 - 56 g/cm² (20 km, 66,000 ft), solar minimum, near polar plateau
 - 6/13/97, 54° N, 117° W

- **Roesler et al. '98, FLUKA**
 - 200 g/cm², 47° N, 11° E, 5/95
 - x 4.0 for best-fit EML data
Response Functions of EML
High-Energy Multisphere Neutron Spectrometer

without containers

MCNP / LAHET

det 13 proton response

det 14 proton response

Neutron Energy (MeV)