U.S. Countermeasure Operations

Jim Loehr MS, CSCS
Astronaut Strength, Conditioning & Rehabilitation Group
NASA – Johnson Space Center
Wyle Integrated Science and Engineering Group

www.nasa.gov
Preflight Exercise

• Goal
 – Maximize increases in muscle, bone and aerobic fitness
 – Familiarize astronauts with in-flight exercise prescription and hardware operation

• Schedule
 – Crewmember assigned about 2 yr before mission
 – Each crewmember is scheduled PT 4 hrs/wk
Preflight Exercise (con’t)

• Exercise Program
 – Aerobic Exercise Prescription
 • Crew performs on own
 – Resistance Exercise Prescription
 • Program written by ASCR
 • General fitness using free-weights
 • Emphasize in-flight exercises
Preflight Exercise (con’t)

• In-Flight Hardware
 – Crew receives 2 CMS Ops Classes
 • Covers hardware usage, maintenance, inspection, etc.
 – Our class focuses on usage, exercise technique, establishing exercise speeds/loads, and safe hardware operation
 – ARED: 16 training sessions over 2 yr (time taken out of PT)
 • Considered training class and is therefore hard scheduled and tracked
 – T2: encourage crew to come during PT time to practice T2 operations
Preflight Challenges

- Training schedule tight making pre-flight training inconsistent
 - Limit on number of work hours in a week
 - PT usually the first thing moved or deleted from training schedule based on priority
 - If moved usually placed extremely early or late

- International travel
 - Multiple facilities, different equipment, various times in country, time in training schedule while in that country
 - Difficult to establish a routine
In-flight Exercise

• Overall concept
 – Body adapts to the surrounding environment
 – Program variation key to mitigate adaptation to 0 G
 – If the body cannot predict the environmental stimuli, more likely to preserve functionality

• Goal
 – Minimize losses in muscle, bone and aerobic conditioning
 – Protect performance and functionality
 – Maximize hardware utilization

• Schedule
 – 2.5 hours exercise 6 d/wk
 – 1.5 hr Resistive
 – 1 hr Aerobic
 – Most exercise 7d/wk
In-flight Exercise (con’t)

• ARED:
 – Vary Load:
 • Lower body - Heavy (4x6), Light (4x12), Medium (4x8)
 • Upper Body - All 3x10
 – Vary Exercises: 3 distinct exercise routines/days
 • Primary exercises are lower body/triple extension movements
 – Vary Order: Each routine or day rotates so each gets a heavy, light, medium day.
 – Vary Exercise Techniques: Use a variety of squat and deadlift techniques and stances.
 – 2 distinct macrocycles; % of load lifted increases week to week
 – Loads determined using pre-flight ARED training sessions
 – Lower Body: Calculate 6, 8 and 12 RM using 10 RM
 – Add 75% BW to all squat and heel raise exercise
 – Next Step: Evaluate high velocity exercises
In-flight Exercise (con’t)

- **CEVIS/T2:**
 - Try to accommodate crew preference
 - Recommend 3/3
 - End of mission 2/4
 - For CEVIS and T2 we prescribe steady state and various interval protocols
 - Difficulty increases as increment progresses
 - CEVIS – Watts
 - T2 – Speed/Load
 - Recommend at least 5 min of passive walking/running as a warm-up
 - **Treadmill Load**
 - Starts at 50-60% of preflight body weight
 - Increase load throughout the mission
 - **CEVIS protocols based on preflight VO2 maximal cycle aerobic test**
In-flight Challenges

• Broken hardware/hardware not performing as expected
• In-flight operations can restrict exercise time
 – e.g. experiments sensitive to vibration, maintenance activities, EVA
• Communication
 – Takes time to adjust program through email
 – Limited individual talk time with crew
• Injury
• Schedule
 – 6 crew + 1.5 hr ARED time = 9 hr; crew work day = 8 hr
• Treadmill
 – Loading on treadmill dictated by harness comfort
 – Limited understanding of load x speed interaction
 • How to create prescriptions to maximize aerobic fitness
• Exercise program affects multiple systems
 – Limited exercise time
 – Maximize prescriptions to maximize use of crew time
• Crew preference/effort
 – Ground: Underestimate loads/speeds for in-flight prescription
 – In-flight: Crew adherence - may deviate or alter program due to preference
Postflight Reconditioning

• All crewmembers have issues to some degree
 – Neurovestibular, orthostatic, back/neck, coordination, balance/agility, aerobic, strength, endurance, power and flexibility
 – All crewmembers progress at different rates
• Goal
 – Return to preflight status as quickly as possible
• Schedule
 – Lasts 45 days starting R+1
 – 2 hr every day, including weekends
• Every day
 – Aerobic Exercise
 – Dynamic Stretching and Warm-up
 – Core Exercise
 – Static Stretching
• Every other day
 – Resistance Training
 – General Performance Skills
Postflight Reconitioning (con’t)

• Every day
 – Aerobic Exercise
 • 20–30 min
 • HR ≥ 75–80% age predicted max
 • Progression: Recumbent Bike → Upright Bike/Rower/Elliptical → Treadmill → Outdoor
 – Dynamic Stretching and Warm-up
 • Done everyday starting at R+0
 • Objectives
 – Primary – warm-up and dynamic stretching
 – Secondary benefits – balance, coordination, orthostatic and neurovestibular
 – Core Exercises
 • Done everyday starting at R+1 and progressing as needed
 • Objectives- develop and work core muscle strength and endurance in all planes of motion
 – Primary – muscle strength and muscle endurance
 – Secondary benefits – reduced back and neck stiffness and neurovestibular
 – Static Stretching
 • Done everyday starting at R+0
 • Objectives – increase flexibility around all joints
 – Primary – flexibility
• **Every Other Day**

 – **Resistance Exercise**
 - Perform exercises similar to those performed during flight
 - Progressively push load to preflight levels

 – **General Performance Skills**
 - **Mobialanception**
 - Start at R+1. As crewmember improves tasks become more challenging
 - Objectives
 - Primary – mobility, balance, proprioception
 - Secondary benefits – neurovestibular and orthostatic

 - **Medicine Ball**
 - Starts at R+1 and becomes progressively harder as the crewmember improves
 - Objectives – power in multiple planes of motion
 - Primary – power and back
 - Secondary benefits – muscle endurance, coordination, balance, strength, neurovestibular

 - **Ladder and Cone Drills**
 - Start around R+7; after our first functional fitness exam.
 - Objectives – agility, coordination and balance while moving in multiple planes of motion
 - Primary – agility, coordination and balance
 - Secondary benefits – neurovestibular, reduced foot and calf soreness

 - **Jumping Drills**
 - Start no sooner than R+21
 - Objectives – power, coordination and balance while moving in multiple planes of motion
 - Primary – power, agility, coordination and balance
 - Secondary benefits – reduced foot and calf soreness
Postflight Challenges

• Progression
 – Crew initial ability / functionality
 • In-flight program adherence
 – Adherence / attendance
 • Family obligations
 – Desire to return to normal activities
 • Crew push too hard, risking injury

• Schedule
 – Don’t always get 2 full hours

• Fatigue
 – Family / friends
 – Fighting gravity
 – Return to work / normal activities
Back-up Slides
ARED Exercise Prescription

<table>
<thead>
<tr>
<th>%</th>
<th>Heavy</th>
<th>Light</th>
<th>Medium</th>
<th>Heavy</th>
<th>Light</th>
<th>Medium</th>
<th>Session 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>Squat</td>
</tr>
<tr>
<td>75</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>Heel Raise</td>
</tr>
<tr>
<td>80</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>Deadlift</td>
</tr>
<tr>
<td>85</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>RDL</td>
</tr>
<tr>
<td>90</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>Shoulder Press</td>
</tr>
<tr>
<td>95</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>Bent-over Row</td>
</tr>
<tr>
<td>100</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>Sumo Squat</td>
</tr>
<tr>
<td>115</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>Heel Raise</td>
</tr>
<tr>
<td>120</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>Deadlift</td>
</tr>
<tr>
<td>125</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>4 x 6</td>
<td>4 x 12</td>
<td>4 x 8</td>
<td>Shrug</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>Tricep</td>
</tr>
<tr>
<td>75</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>SL Squat</td>
</tr>
<tr>
<td>90</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Sumo Deadlift</td>
</tr>
<tr>
<td>95</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>RDL</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>Upright Row</td>
</tr>
<tr>
<td>105</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Bicep Curl</td>
</tr>
<tr>
<td>110</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>Single Arm Row</td>
</tr>
<tr>
<td>115</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Simple Ride Protocol

<table>
<thead>
<tr>
<th>Elapsed Time</th>
<th>Stage Time</th>
<th>% VO2</th>
<th>VO2 (L/min)</th>
<th>Watts</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>55</td>
<td>1.90</td>
<td>104</td>
<td>113</td>
</tr>
<tr>
<td>28</td>
<td>25</td>
<td>80</td>
<td>2.76</td>
<td>172</td>
<td>137</td>
</tr>
<tr>
<td>31</td>
<td>3</td>
<td>55</td>
<td>1.90</td>
<td>104</td>
<td>113</td>
</tr>
</tbody>
</table>

Two Minute Interval

<table>
<thead>
<tr>
<th>Elapsed Time</th>
<th>Stage Time</th>
<th>% VO2</th>
<th>VO2 (L/min)</th>
<th>Watts</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>55</td>
<td>1.90</td>
<td>104</td>
<td>113</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>80</td>
<td>2.76</td>
<td>172</td>
<td>137</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>60</td>
<td>2.07</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>85</td>
<td>2.94</td>
<td>185</td>
<td>142</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>60</td>
<td>2.07</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>85</td>
<td>2.94</td>
<td>185</td>
<td>142</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>60</td>
<td>2.07</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>85</td>
<td>2.94</td>
<td>185</td>
<td>142</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>60</td>
<td>2.07</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>85</td>
<td>2.94</td>
<td>185</td>
<td>142</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>60</td>
<td>2.07</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>85</td>
<td>2.94</td>
<td>185</td>
<td>142</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>60</td>
<td>2.07</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>80</td>
<td>2.76</td>
<td>172</td>
<td>137</td>
</tr>
<tr>
<td>36</td>
<td>5</td>
<td>55</td>
<td>1.90</td>
<td>104</td>
<td>113</td>
</tr>
</tbody>
</table>

2 Min Protocol

<table>
<thead>
<tr>
<th>Stage #</th>
<th>Time (min)</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

5 Min Protocol

<table>
<thead>
<tr>
<th>Stage #</th>
<th>Time (min)</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

National Aeronautics and Space Administration