Silicone Rubber Products — Introduction

Contents

Introduction 2-3
Silicone Solid Rubber 4-5
Reinforced Solid Rubber 6
Silicone Sponge Rubber 7
Silicone Tape 8
Silicone Foam 9
Conductive Silicone 5-10
Coated Fabrics 11

COHRlastic® is the trade name for Saint-Gobain Performance Plastic (SGPPL) CHR’s family of high performance silicone rubber products. Flexible, resilient silicone rubber has a unique chemical structure which gives it a high temperature stability and general inertness unavailable in any other elastomers. As a result, COHRlastic silicone rubber works in applications where no other material can be used.

Thermal stability

Silicone’s physical properties are not adversely affected by prolonged exposure to temperatures from –100°F to +500°F. In addition, it can withstand intermittent exposure to even higher temperatures (Figure A – Time/Temperature Resistance). Silicone far out-distances other elastomers in resistance to thermal degradation and outperforms other elastomers in general service life, compression set resistance, electrical stability and non-stick properties. Silicone also has good chemical and fluid resistance. Although it may swell in contact with some solvents, the rubber will return to its original dimensions, usually without permanent deterioration, after the solvent has evaporated. At elevated temperatures, SGPPL silicone will outgas far less than other silicone elastomers. And if it should burn, it produces a non-conductive white ash and odorless, non-toxic smoke.

Inertness

COHRlastic silicone rubber is odorless, tasteless and non-toxic. It contains no acid producing chemicals and therefore is non-corrosive and non-staining. Silicone rubber has excellent weatherability because it is unaffected by sunlight, ozone and/or extremely moist or dry conditions. It will not support the growth of fungus. The service life of COHRlastic silicone rubber in room temperature applications is virtually unlimited.

Silicone variations for specific applications

General purpose silicone rubber itself is versatile material. Beyond that, there are different types available for specific applications.

Silicone rubber compounded from a phenyl base will function down to –190°F, with specialty formulations that will allow –170°F usage. The benefit is greater strength, flexibility and compressibility at those temperatures than could be achieved with the more common methylvinyl compounds. Applications involving high heat and pressure call for a general purpose silicone rather than a high strength variety. Reversion can result from high temperature and pressure, and the general purpose compounds have better resistance to this phenomenon.

When fuel and solvents are present, a fluorinated silicone rubber is the best choice. This polymer affords maximum resistance to swelling and degradation associated with these fluids. SGPPL CHR offers fluorosilicone sponge as a standard product. Solid sheet is available on special order.

High-strength silicones — those with a tensile strength of 1000 psi and higher — are the best choice for applications involving high elongation, flexing or tear resistance.

Self-adhering silicone sheet

SGPPL CHR can apply pressure sensitive silicone or acrylic adhesive to standard sheets (36” x 36”) of COHRlastic R1040, R1045, R10460, R10470, R10480 and R10450. COHRlastic 300 through 700, and COHRlastic 3520. Sheet thickness should be 1/4” or more for silicone adhesive and 1/2” for acrylic adhesive. SGPPL CHR’s F12 silicone foam is available with a film supported acrylic pressure sensitive adhesive in thicknesses of 1/8” to 1”.

The self-adhering sheets permit substantial savings because they are easy to apply, simplify production and eliminate the high cost of bonding. The silicone adhesive withstands the same temperature extremes, –100°F to +200°F, as the silicone rubber sheet.

Acrylic adhesive has a temperature range of –20°F to +300°F and offers the advantage of twice the adhesion to steel and a longer shelf life than silicone adhesive. The self-adhering sheets are protected by an easily removed release liner. Apply to a clean, dry, degreased surface. Contact SGPPL CHR for specialty materials.

Compression modulus

Compression modulus refers to the amount of pressure required to compress a piece of rubber to a certain percentage of original thickness. Figure B – Compression Modulus shows the values for silicone sponge, solid and foam. Testing was performed on 1/4” thick, cylindrical specimens.

Problem solver

SGPPL CHR has a reputation for solving tough design problems based on over 50 years of silicone rubber experience. And we are committed to developing and supplying the highest quality products and technical assistance that meet your exact needs. So SGPPL CHR is the place to start whatever your silicone rubber requirements.
Silicone Solid Rubber

COHRlastic solid silicone rubber in square sheet and continuous length form has a smooth, blemish-free surface. It is available in degrees of hardness from relatively soft 30 durometer to the relatively hard 70 durometer on the Shore A scale. It is manufactured in different formulations to provide a choice of physical properties and cost considerations.

Series 900 - 9700 COHRlastic is also general-purpose, but is produced in 36” wide continuous lengths for the most efficient utilization of material, minimizing waste. Standard thicknesses are 1/32”, 1/16” and 1/8”. Withstand temperatures from –20°F to +540°F. Please consult plant for availability of additional thicknesses and colors.

Series 9200 high-performance COHRlastic provides excellent tensile strength and superior tear resistance. It is tougher and more resilient than general-purpose silicone. Standard thicknesses are 1/32”, 1/16” and 1/8”. Withstands temperatures from –20°F to +440°F. A minimum thickness of 0.05” is available on a minimum quantity basis.

Red color is standard for general-purpose goods. Black or gray can be provided on a minimum quantity basis. The 9200 series is standard in gray, but clear or red are available on a minimum quantity basis.

TC900, an unsupported, thermally-conductive solid silicone available in several thicknesses, provides thermal and mechanical protection to electronic devices. TC900T, in the uncured state, is an efficient system for bonding printed circuit boards, heat sinks and electronic components to a variety of substrates. Refrigerated storage is required.

Common Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>1/2” x 1/16”</th>
<th>3/8” x 1/16”</th>
<th>1/2” x 1/32”</th>
<th>3/8” x 1/32”</th>
<th>1/2” x 1/64”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness/Tolerance (inches)</td>
<td>1/2” x 1/16”</td>
<td>3/8” x 1/16”</td>
<td>1/2” x 1/32”</td>
<td>3/8” x 1/32”</td>
<td>1/2” x 1/64”</td>
</tr>
<tr>
<td>Weight (lbs/lb.)</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Linear thermal expansion</td>
<td>0.00015</td>
<td>0.00015</td>
<td>0.00015</td>
<td>0.00015</td>
<td>0.00015</td>
</tr>
<tr>
<td>Specific heat (BTU/lb.°F)</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Thermal conductivity (W/m-K)</td>
<td>0.037</td>
<td>0.037</td>
<td>0.037</td>
<td>0.037</td>
<td>0.037</td>
</tr>
<tr>
<td>Dielectric strength (kV/mm)</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Volume resistivity (Mohm-cm)</td>
<td>1 x 10¹⁴</td>
</tr>
<tr>
<td>Hardness (Shore A)</td>
<td>70 ± 5</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>200</td>
<td>350</td>
<td>200</td>
<td>350</td>
<td>200</td>
</tr>
<tr>
<td>Tensile strength (psi)</td>
<td>250</td>
<td>200</td>
<td>250</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>Tear strength (psi)</td>
<td>50</td>
<td>75</td>
<td>70</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>Compression set (%)(after 70 hrs. at 320°F)</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Compression set (%)(after 70 hrs. at 437°F)</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Tensile Strength Change (%)</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Elongation Change (%)</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Tensile Strength Change (%)</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Tear Strength Change (%)</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Volatility Change (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Common Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. ASTM Test Method used: Durometer (D2240), Tensile Strength and Elongation (D412), Tear Strength (D416), Compression (D357). Data Method B: ASTM D3410 and Spec. 22-2416. Special colors Minimum quantities apply.

OHR provides certification to the specifications listed when requested with order. All properties are typical values and should not be used for writing specifications. Please consult plant concerning updated specifications. Government and military specifications are being revised at the time of this catalog printing.
Reinforced Solid Rubber

CF silicone solid rubber reinforced with fiberglass is a dimensionally-stable, durable material for press forming and gasketing. It is available in six constructions:

- **CF3330**, available in three thicknesses, was developed to meet AMS 3320. Consequently, 3320 has lubricating oil resistance and excellent compression set resistance.
- **CF4032** and **CF6050** are thin, flexible and abrasion-resistant for general-purpose use.
- **CF4420** is specially formulated for thermal stability and long life under extreme heat and pressure for extended dwell times. It resists reversion (i.e. softening and outgassing) longer than general purpose silicone. Throughout its useful life, 4420 has thermal stability for consistent thermal conductivity.
- **CF4444** has a specially formulated rubber compound to give better reversion resistance. The reinforcement is a special crush-resistant fiberglass, making the product excellent for press pads in high-temperature and pressure lamination applications.
- **CF4451** is a fiberglass fabric coated with static dissipating silicone rubber having a surface resistivity of 1 x 109 Ohms – cm. Virtually eliminates static electric discharges which cause operator discomfort and can potentially damage electrical components.
- **CF4480** utilizes our most reversion-resistant silicone rubber compound. The product is designed for use in applications involving the tough combination of prolonged high-pressure confinement at temperatures in the range of 375°F to 650°F.

CF4444 has a specially formulated rubber compound to give better reversion resistance. The reinforcement is a special crush-resistant fiberglass, making the product excellent for press pads in high-temperature and pressure lamination applications.

Silicone Sponge Rubber

Flexible, compressible COHRlastic silicone closed cell sponge is designed for high-performance gasketing, thermal shielding, vibration mounts and press pads. It is available in six constructions:

- **R1040** is a general-purpose silicone sponge, can be used in most applications.
- **R10480** has extremely low compression set and maintains its resiliency even under extended compression.
- **R10490** is flame retardant. When held in a vertical position and exposed to a 2,000°F flame for 12 seconds, there is no residual flame and less than a 10 second afterglow like R10480, it is especially resistant to compression set.
- **R1050** silicone sponge with fiberglass reinforcement is a unique construction.

It has the compressibility of sponge, plus dimensional stability in the X-Y direction. The absence of stretch contributes to the consistent size and shape of die cut parts and eliminates outward extrusion under pressure.

- **R1040** fluorosilicone sponge rubber can be used as a gasket where it is necessary, such as between printed circuit boards and heat sinks, decal transfer or applying heat activated adhesives.
- **R10480** closed-cell conformable silicone rubber sponge is designed for use where both compressibility and heat transfer are necessary, such as between printed circuit boards and heat sinks, decal transfer or applying heat activated adhesives.

COHRlastic®

- **COHRlastic®** is specially formulated for fluorosilicone sponge rubber having a surface resistivity of 1 x 10^9 Ohms – cm. Virtually eliminates static electric discharges which cause operator discomfort and can potentially damage electrical components.

General Purpose

- **CF4420**: available in three thicknesses, was developed to meet AMS 3320. Consequently, 3320 has lubricating oil resistance and excellent compression set resistance.
- **CF4032** and **CF6050** are thin, flexible and abrasion-resistant for general-purpose use.
- **CF4420** is specially formulated for thermal stability and long life under extreme heat and pressure for extended dwell times. It resists reversion (i.e. softening and outgassing) longer than general purpose silicone. Throughout its useful life, 4420 has thermal stability for consistent thermal conductivity.
- **CF4444** has a specially formulated rubber compound to give better reversion resistance. The reinforcement is a special crush-resistant fiberglass, making the product excellent for press pads in high-temperature and pressure lamination applications.
- **CF4451** is a fiberglass fabric coated with static dissipating silicone rubber having a surface resistivity of 1 x 10^9 Ohms – cm. Virtually eliminates static electric discharges which cause operator discomfort and can potentially damage electrical components.
- **CF4480** utilizes our most reversion-resistant silicone rubber compound. The product is designed for use in applications involving the tough combination of prolonged high-pressure confinement at temperatures in the range of 375°F to 650°F.

Silicone Sponge Rubber

- **R1040** is a general-purpose silicone sponge, can be used in most applications.
- **R10480** has extremely low compression set and maintains its resiliency even under extended compression.
- **R10490** is flame retardant. When held in a vertical position and exposed to a 2,000°F flame for 12 seconds, there is no residual flame and less than a 10 second afterglow like R10480, it is especially resistant to compression set.
- **R1050** silicone sponge with fiberglass reinforcement is a unique construction.

It has the compressibility of sponge, plus dimensional stability in the X-Y direction. The absence of stretch contributes to the consistent size and shape of die cut parts and eliminates outward extrusion under pressure.

<table>
<thead>
<tr>
<th>Width</th>
<th>36” wide</th>
<th>40” wide</th>
<th>38” wide</th>
<th>40” wide</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF4420</td>
<td>Thin, flexible</td>
<td>COHRastic®</td>
<td>is specially formulated for fluorosilicone sponge rubber having a surface resistivity of 1 x 10^9 Ohms – cm.</td>
<td></td>
</tr>
</tbody>
</table>
Strip-N-Stick® Silicone Tape

Strip-N-Stick® Tape provides all the benefits of silicone rubber in an easy-to-apply, pressure-sensitive adhesive tape form. Compressible and flexible, it can conform to irregular surfaces, wrap over cylinders or be formed to produce rigid angles. Applications include gasketing, vibration dampeners, and thermal insulation. The tape reduces the need for expensive die-cut parts — you don’t pay for the center. It also eliminates high cost of bonding, and will be slit to order from 1/32” and up.

300A is a silicone sponge with aggressive acrylic adhesive. Its unique construction provides compressibility of sponge and dimensional stability of fiberglass reinforcement. Stretch is eliminated, which contributes to the consistent size and shape of cut parts and inhibits outward extrusion under high pressure. It permits further close tolerance slitting.

440A is a 1/32” thick Shore A 90 durometer silicone solid with high-temperature silicone adhesive. It combines 30 durometer solid rubber with a high-adhesion acrylic adhesive for an excellent 1/32” thick gasket material. It provides high elongation and good conformability.

512AF uses SGPPL CHR’s silicone foam with film-supported acrylic pressure sensitive adhesive. Adhesive temperature range for Silicone PSA is –100°F to +500°F and for Acrylic PSA, –10°F to +300°F.

Low-density, flame-retardant COHRlastic silicone foam yard goods provide outstanding performance for industries ranging from aviation and mass transit to automotive, electronics, construction and furniture. In addition to a UL 94V-0 listing in thicknesses down to 1/8”, it withstands a 2100°F flame for more than 30 minutes without burning through in thicknesses down to 1/32”.

The material, which has a nominal density of 12 pounds per cubic foot, generates very little white smoke. Non-corrosive for use with metals and in hostile environments, it has low compression set. Among its applications are flexiblock, thermal barriers, noise and vibration dampeners, insulation and high-performance gaskets or seals.

For the aviation, automotive and mass transit industries, it offers a high degree of design flexibility. Lightweight and easy to process, it can be laminated to seat cover fabrics and carpeting as a backing for added flame resistance in passenger compartment furnishings.

The material has similar uses in institutional and residential furnishings, marine and lighting applications. It offers properties valuable in flame retardant backings for floor, wall and furniture coverings; fire-wall and thermal barriers or insulation, padding and gasketing for commercial and private marine vehicles; or gasketing and sealing in high-intensity light fixtures and electronic components in medical, computer and business equipment.

Colored gray, it is supplied in 18” and 36” wide roll stock. Thicknesses are shown in the table below. It is available plain or, on special order, laminated to any of a wide range of substrates.

Because of the unique nature of COHRlastic foam, SGPPL CHR has undertaken a rigorous testing program which is performed at outside independent laboratories. The tests document the flame resistant properties and low levels of toxicity and smoke generation as well as electrical and mechanical properties. Details are on file at SGPPL CHR.

PROPERTIES

<table>
<thead>
<tr>
<th>Silicone Foam Material Type</th>
<th>Sponge</th>
<th>Sponge</th>
<th>Fiberglass Reinforced Sponge</th>
<th>Solid</th>
<th>Solid</th>
<th>Foam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (lb./ft.3)†</td>
<td>.017</td>
<td>.019</td>
<td>.020</td>
<td>.040</td>
<td>.040</td>
<td>.018</td>
</tr>
<tr>
<td>Tensile Strength (PSI)†</td>
<td>75</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Elongation Break (%)</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Compression Set (%) (compressed 50% for 22 hrs. at 212°F)*</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Vertical Burn (seconds)†</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>Temperature Range (°F)</td>
<td>–60 to +350</td>
</tr>
<tr>
<td>Flammability</td>
<td>UL94V-0</td>
<td>UL94V-0</td>
<td>UL94V-0</td>
<td>UL94V-0</td>
<td>UL94V-0</td>
<td>UL94V-0</td>
</tr>
<tr>
<td>Flame Spread Index, Radiant Panel, NRC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arc Resistance, ASTM D495 (sec.)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Noise Reduction Coefficient, ASTM C423, 84a paragraph 13.2</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
</tr>
<tr>
<td>Flame Spread Index, Radiant Barrier, ASTM E162, FAR25.853(a) and (b)</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Dielectric Constant, ASTM D150 at 100 Hz</td>
<td>1.31</td>
<td>1.31</td>
<td>1.31</td>
<td>1.31</td>
<td>1.31</td>
<td>1.31</td>
</tr>
<tr>
<td>Hydrogen Cyanide PPM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hydrogen Chloride PPM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SMOKE GENERATION</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Noise Reduction Coefficient, ASTM C423, 84a paragraph 13.2</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
</tr>
</tbody>
</table>

* Stated properties are based on a cop with roll stock of material. Values are typical. **Standard color. Other colors available on a minimum order basis.

COHRlastic Silicone Foam

The following is a list of performance tests and ratings:

- Flame Spread Index, Radiant Panel, NRC
- Limiting Oxygen Index, ASTM D2863
- Arc Resistance, ASTM D495
- Density (lb./ft.3)
- Temperature Range (°F)
- Flammability
- Smoke Generation
- Noise Reduction Coefficient
- Arc Resistance
- Dielectric Constant
- Hydrogen Chloride PPM
- Hydrogen Cyanide PPM

Benefits of COHRlastic Silicone Foam:

- Flame retardant
- High temperature resistance
- Flexible
- Easy to apply
- Versatile applications

COHRlastic Silicone Foam is a unique product offering for a wide range of industries. For more information or to order, please contact your local SGPPL CHR representative.
Conductive silicones expand the use of our products into the electronic assem-
blies market. By the use of special fillers, silicone can be made thermally or elec-
trically conductive. COHRlastic® is a smooth, calender-coated
and the
ermally-conductive solid
electrically-conductive silicone
ermally-conductive. COHRlastic®
are thermally-conductive
provides certification to the specifications listed when requested with order. All properties are typical values and should not be used for writing specifications.

Provided on a minimum order basis. *Sheets may be split to other thicknesses. Consult factory.**

SCGPL CHR standard COHRlastic silicone coated fabrics, available from stock, have silicone rubber dispersion coated on both sides of fiberglass. They are
thin and tough, dimensionally stable yet flexible. Their many applications include belting, vacuum blankets, thermal shielding and diaphragms.

The 1000 series has superior electrical prop-
erties and good abrasion resistance, while the 9000 series has a smoother, more compressible coating for gasket-
ing applications.

The fabrics shown here are standard products and reflect only a small portion of the many coated fabrics that SCGPL CHR is capable of manufacturing. By varying the glass style and rubber for-

rubber, the aluminum mesh maintains
electrical contact, while the elastomer
provides an effective seal in gasket appli-
cations.

EC02 electrically-conductive silicone
performs three distinct functions: the
carbon filler in allows it to act as a low
amperage conductor; it shields RF and
EMI interference; and it protects against
electrostatic discharge.

See page 7 for R8016 and pages 4 - 5 for TC100
and TC102U thermally-conductive solid
rubber products.

**Temperature Range (°F) –65 to +500 –170 to +500 –170 to +500 –170 to +500

<table>
<thead>
<tr>
<th>Color</th>
<th>Thickness (inches)</th>
<th>Tear Strength (warp x fill) (Kg)*</th>
<th>Burst Strength (PSI)*</th>
<th>Average Weight per Square Yard (ounces)*</th>
<th>Elongation (%)*</th>
<th>Total Thickness (inches)</th>
<th>Fabric Thickness (inches)</th>
<th>Color</th>
<th>Width</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray</td>
<td>.007</td>
<td>13 x 13</td>
<td>600</td>
<td>22</td>
<td><10</td>
<td>.007</td>
<td>.007</td>
<td>White</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Gray</td>
<td>.007</td>
<td>18 x 18</td>
<td>800</td>
<td>33</td>
<td><10</td>
<td>.007</td>
<td>.007</td>
<td>White</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Gray</td>
<td>.016</td>
<td>13 x 13</td>
<td>600</td>
<td>22</td>
<td><10</td>
<td>.016</td>
<td>.016</td>
<td>Red-brown</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Gray</td>
<td>.016</td>
<td>18 x 18</td>
<td>800</td>
<td>33</td>
<td><10</td>
<td>.016</td>
<td>.016</td>
<td>White</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>White</td>
<td>.007</td>
<td>13 x 13</td>
<td>600</td>
<td>22</td>
<td><10</td>
<td>.007</td>
<td>.007</td>
<td>White</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>White</td>
<td>.007</td>
<td>18 x 18</td>
<td>800</td>
<td>33</td>
<td><10</td>
<td>.007</td>
<td>.007</td>
<td>White</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>White</td>
<td>.016</td>
<td>13 x 13</td>
<td>600</td>
<td>22</td>
<td><10</td>
<td>.016</td>
<td>.016</td>
<td>White</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>White</td>
<td>.016</td>
<td>18 x 18</td>
<td>800</td>
<td>33</td>
<td><10</td>
<td>.016</td>
<td>.016</td>
<td>White</td>
<td>50</td>
<td>20</td>
</tr>
</tbody>
</table>

Resistance to Electrostatic Discharge:

- **TC100**
 - 1,000 volts/mil, approx.
- **TC100U**
 - 10,000 volts/mil, approx.
- **R10404**
 - 10,000 volts/mil, approx.
- **FPO**
 - 10,000 volts/mil, approx.

Silicone-Coated Fabrics

- **FPO**
 - **PHYSICAL PROPERTIES**
 - **Weight:** 11 oz/sq yd
 - **Thickness:** .010 in.
 - **Elongation:** <10%
 - **Total Thickness:** .010 in.
 - **Color:** White
 - **ELECTRICAL PROPERTIES**
 - **Volume Resistivity:** 1 x 10^14 ohm-cm
 - **Dielectric Strength:** 9,500 volts
 - **Hardness:** Shore A 84

COHRlastic®

- **PHYSICAL PROPERTIES**
 - **Weight:** 1 oz/sq yd
 - **Thickness:** .007 in.
 - **Elongation:** <10%
 - **Total Thickness:** .010 in.
 - **Color:** Gray
- **ELECTRICAL PROPERTIES**
 - **Volume Resistivity:** 1 x 10^15 ohm-cm
 - **Dielectric Strength:** 20,000 volts
 - **Hardness:** Shore A 85

EC02

- **PHYSICAL PROPERTIES**
 - **Weight:** 1 oz/sq yd
 - **Thickness:** .007 in.
 - **Elongation:** <10%
 - **Total Thickness:** .010 in.
 - **Color:** Gray
- **ELECTRICAL PROPERTIES**
 - **Volume Resistivity:** 1 x 10^15 ohm-cm
 - **Dielectric Strength:** 20,000 volts
 - **Hardness:** Shore A 85
Saint-Gobain Performance Plastics (SGPPL) offers a wide range of products, including Fluorglas® PTFE and silicone-coated fabrics, CHR® Pressure-sensitive Adhesive Tapes, ThermaCool® Thermally Conductive Products®, PTFE sheet and film, custom film coatings and release liners.

These engineered products are used primarily by original equipment manufacturers (OEMs) in many fields, including fuel processing industries, aerospace, transportation, electronics, healthcare and industrial equipment. Our combined expertise from our Tapes, Film and Coatings facilities gives you the assurance of a team approach to solving your critical application questions.

Please contact your nearest Saint-Gobain Performance Plastics representative for more detailed application and product information.