
S
W

A
T

Extending Benefits of Static Code
Analysis Tools

NASA IV&V Software Assurance Tools
(SWAT)

S
W

A
T

Outline
• Setting Context
• Identifying Types of Code Defects
• Preparing for Analysis
• Maximizing Tool Effectiveness
• Selecting Appropriate Tools
• Customizing to Support Analysis
• Leveraging Historical Analysis Data
• Reviewing Ongoing Efforts
• Taking Questions

2

S
W

A
T

Setting Context

3

• SWAT is now actively participating
in the Static Code Analysis
Working Group to help facilitate
improvements in the use of static
code analysis tools within the
IV&V Program

• SWAT is working with IV&V
projects to gather representative
source code and creating sample
test code when necessary for a
library to support evaluation of
both current and additional tools

• SWAT is responding to requests
from projects regarding specific
capabilities by verifying current
tools with test code and
evaluating additional tools for use

SWAT is working to maximize the effectiveness of IV&V’s static code
analysis capabilities.

Identifying gaps in our current
static analysis capabilities and
evaluating solutions to improve
IV&V’s analysis coverage

Working to better understand
the capabilities of current static
code analysis tools

Evaluating how current tools are
being applied and identifying
opportunities to improve the
process of using them

S
W

A
T

Identifying Types of Code Defects

4

Syntax Run-time Logic

Categories of code defects

S
W

A
T

Identifying Types of Code Defects

5

Syntax

Caught during compile time, e.g. code is attempting to use an
undeclared variable

May include style or certain coding standards violations that are
caught through basic parsing and “pattern matching”

S
W

A
T

Identifying Types of Code Defects

6

Logic

May be caught during functional requirements based testing, i.e. does
the code do what it was supposed to?

High value findings when IV&V is able to identify or confirm logic
defects through either manual analysis or use of dynamic analysis
resources such as the ITC JSTAR lab

Analysts have indicated that, from their experience,
digging deeper into understanding the code when
reviewing static code analysis results can provide a side
benefit of identifying other unrelated logic defects

S
W

A
T

Identifying Types of Code Defects

7

Occurs during program execution, e.g. out of bounds array access
(“buffer overflow”), division by zero, non-initialized local variables,
integer overflows, illegal dereferenced pointer

High value findings, as these defects may result in program crash or
undefined behavior that could ultimately result in the loss of the
mission or impact the accomplishment of a mission objective

Run-time

Underlying tool technology (e.g. abstract interpretation) and project
configuration impacts the effectiveness of identifying certain defects

Static code analysis tools can help detect dangerous run-time defects
in the code or even prove the absence of certain run-time defects
when using formal methods-based approaches

Presenter
Presentation Notes
 Run-time defects are generally considered to be high priority concerns in source code
 IV&V has been asked to help with identifying these particular defects as part of project anomaly investigation
 May be difficult to uncover defects through traditional testing approaches
 May be addressed through exception handling IF the code is designed to handle all cases robustly

S
W

A
T

Preparing for Analysis

8

What code do I expect to get
and what does it do?

What is the
development

environment for this
build of code, and

how will it affect my
analysis? What are the

characteristics of the
target architecture on

which this code was
written to run?

Presenter
Presentation Notes
- Preparing in advance for the analysis effort is a significant factor in obtaining the full benefits from our static code analysis tools

S
W

A
T

Preparing for Analysis

9

What code do I expect to
get and what does it do?

Understanding of requirements
implemented in the code

Form an expectation of
interfaces that should be
present in the code build

What are the
characteristics of the

target architecture on
which this code was

written to run?

Identify the important
characteristics of the

architecture that could be
reflected in the source code

such as CPU, operating system,
key addresses, and memory

layout

S
W

A
T

Preparing for Analysis

10

Understanding of requirements
implemented in the code

Form an expectation of
interfaces that should be
present in the code build

Identify the important
characteristics of the

architecture that could be
reflected in the source code

such as CPU, operating system,
key addresses, and memory

layout

• Know what to expect when you
receive code (or recognize if you
didn’t get what was expected!)

• Create a team “cheat sheet” of
important characteristics of the
architecture that could be
reflected in the source code.

• Determine what prior projects
may be relevant to the analysis

• Check with ITC JSTAR lab for any
available project simulations
that could support
understanding of the

architecture for analysis

S
W

A
T

Preparing for Analysis

11

Understand the characteristics
of the developer’s environment

Identify differences between
the developer’s environment

and your analysis environment

Consider most appropriate tools
to aid in analysis

What is the
development

environment for this
build of code, and

how will it affect my
analysis?

S
W

A
T

Preparing for Analysis

12

Understand the characteristics
of the developer’s environment

Identify differences between
the developer’s environment

and your analysis environment

Consider most appropriate tools
to aid in analysis

• Identify dependencies that may
exist in source code

• Identify build artifacts and

settings to expect, with respect
to the build system used by the
developer

• Leverage previous experience
with the same development
environment if possible

• Identify what static analysis
tools the development project is
using to prevent overlap where
possible

S
W

A
T

Preparing for Analysis

13

S
W

A
T

Preparing for Analysis

14

Development Environment Characteristics

• Developed in Wind River Workbench
• Uses the GNU toolchain
• Windows desktop environment
• Regular source code Linting during builds

• Source code with VxWorks dependencies and
version information

• Makefiles to build the code with the VxWorks
GNU make tool

• Source code and makefiles with file references
that assume case insensitivity

• Source code that may be more effectively
analyzed with some tool other than FlexeLint
(because of the developer-initiated lint during
the build process)

• Create cheat sheet with
processor, memory, and
VxWorks characteristics

• Evaluate projects with
similar mission
characteristics to get an
idea of what will be
delivered

S
W

A
T

Maximizing Tool Effectiveness

15

That wasn’t too bad.
I guess I’ll…

!!!!!

Incoming
Code!

Now that I have code, what
do I need to know to

maximize the effectiveness of
my static code analysis tools?

Presenter
Presentation Notes
- Maximizing the effectiveness of our tools is another significant factor in obtaining the full benefits from our static code analysis tools

S
W

A
T

Maximizing Tool Effectiveness

16

Understand the developer’s
build process and gather build

information

Ensure that macros and other
information are defined

correctly within your build

Review the checks enabled for
your build to ensure that the

checks of interest for the IV&V
effort have been selected

Now that I have
code, what do I need
to know to maximize
the effectiveness of

my static code
analysis tools?

Preparing for the static code analysis effort adequately
and properly configuring the build are necessary for the
most complete and accurate analysis results

S
W

A
T

Maximizing Tool Effectiveness

17

Build

Understand the developer’s
build process and gather build

information

INC

?

INC

INC

 Build Logs

Presenter
Presentation Notes
Note that most of these vendors intend for their tool to be integrated into your build environment where it can collect the build information automatically. We as IV&V don’t operate in the developer’s build environment, so we have to be extra careful to understand the build information that must be supplied to the static code analysis tool.

The accuracy of our analysis can be affected by what the developer provides and what we ask for:

- A developer may provide files that aren’t supposed to be included in the specific build we intend to analyze

- A developer may not provide build information, leaving IV&V to make assumptions about what should be analyzed, unless IV&V requests additional information from the developer

S
W

A
T

Maximizing Tool Effectiveness

18

Understand the developer’s
build process and gather build

information

• Once missing files have been
identified, the analyst should:

• Request missing files from
the developer (common
with third party libraries) as
the ideal solution

• Use other available library
code if necessary

• Stub out the missing code if
absolutely necessary

• Inspect any build logs or other

status produced by our tools,
looking carefully for warning or
error messages such as missing
header files, make any necessary
adjustments and execute the
build again

• Inspect developer build artifacts
given by the project to get a feel
for the build process

• Consider utilizing tools to help
determine if we have the needed
files for analysis, in addition to
the build information (e.g.,
Understand, Eclipse, and SWAT
script for creating a Klocwork
build specification file)

Presenter
Presentation Notes
The static code analysis tools will report in their output whether include files are missing, which can be used as a technique to locate missing header files
- Identifying missing headers with a different tool such as Eclipse or Understand may be more efficient for large or complex builds because the static code analysis tool can run slowly

S
W

A
T

Maximizing Tool Effectiveness

19

Ensure that macros and other
information are defined correctly
within your build so that we are

analyzing the correct code

Not only does the build tell us WHICH files
need to be analyzed, but it also tells HOW
those files should be analyzed based on
macro definitions passed to the compiler.

void Fsw::setupTimer(void)
{
 bool setupSuccessful;

#ifdef TARGETCPU
 setupSuccessful = false;

 // Perform setup of interrupt handling routine.
 // Lines snipped that do the work...
 // Create a task to handle the interrupt.
 // More lines snipped...
#endif
}

Presenter
Presentation Notes
- Once we have collected the source files and included header files, it is possible to run a valid analysis with no errors reported related to the configuration. However, we may be analyzing the wrong code if we haven’t properly considered the macro definitions passed to the preprocessor by the compiler.

- The example on this slide, adapted (and sanitized) from actual flight software code demonstrates how critical it can be to understand build-time macro definitions.

S
W

A
T

Maximizing Tool Effectiveness

20

Ensure that macros and other
information are defined correctly

within your build

• Make sure that macro
definitions and other
information relative to the
software being analyzed are
added to the build
information passed to our
static code analyzers. Failure
to do so may produce invalid
or misleading results.

Most tools can:

• Operate with
incomplete
information and
provide potential
issues

• Execute the build and
produce some output

Presenter
Presentation Notes
- We understand that manually adding pre-compiler definitions can be a lot of work, but it is necessary to ensure that the results are correct and as complete as possible.

S
W

A
T

Maximizing Tool Effectiveness

21

Review the checks
enabled for your

build to ensure that
the checks of interest

for the IV&V effort
have been selected

• Review the specific checks enabled for
your build in the static analysis tool to
ensure that the checks of interest for the
IV&V effort have been selected

• Consider also documenting what is NOT
being checked for, if applicable

• Consider running multiple builds with
different sets of checks enabled

• Consider enabling MISRA checks for
critical flight software, but separate builds
may be warranted in this instance due to
the potential for a significant number of
resulting messages

Presenter
Presentation Notes
 MISRA C and MISRA C++ began as software development standards for safety critical embedded systems in the motor vehicle industry. It has since gained acceptance in other embedded applications, including aerospace.
 NASA has also placed importance upon these standards as demonstrated by the following:
- JPL coding standard for the C programming language is based on the MISRA standards - http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf
- The ‘Power of Ten’ rules developed by Gerard Holzmann at JPL for developing safety critical code overlap with some of the MISRA standards - http://spinroot.com/gerard/pdf/P10.pdf
- At least one IV&V project (ICESat-2) has communicated with SWAT that their NASA development project that they support is targeting MISRA compliance in their source code

- For more information about MISRA and these standards, you can visit http://www.misra.org.uk/.

S
W

A
T

Selecting Appropriate Tools

22

Which of the available
tools are appropriate for

my task?

Presenter
Presentation Notes
- Selecting the appropriate tools for the problem is another significant factor in obtaining the full benefits from our static code analysis tools

S
W

A
T

Selecting Appropriate Tools

23

Project software characteristics

Project development
characteristics

IV&V team analysis
requirements

Which of the
available tools are
appropriate for my

task?

IV&V Project scope

Presenter
Presentation Notes
- IV&V goals for the analysis and expected quality levels help determine if we are using the correct tools

- Analysis of flight software vs. ground software will influence which tools are applied to the static code analysis efforts

- Analysis that is required to be a quick turnaround against a very large code base may dictate use of tools which can process large amounts of code faster and are designed to limit the number of false positives so that at least some high value defects may be identified

- Analysis that is targeted at finding all cases of a similar type of defect, e.g. buffer overflow, may benefit from the use of multiple tools that are capable of identifying that particular defect

- Analysis that is focused on a specific highly critical module or in support of anomaly investigation may want to employ the most robust tools available regardless of computational cost

S
W

A
T

Selecting Appropriate Tools

24

Project software characteristics

Project development
characteristics

Ground vs. Flight software

Size of code base

Source code language

Overlapping analysis with
project

Availability and completeness
of project artifacts

Presenter
Presentation Notes
- Target source code language(s)

- Analysis of flight software vs. ground software will influence which tools are applied to the static code analysis efforts

- Overlapping use of a particular static code analysis tool by the development project

S
W

A
T

Selecting Appropriate Tools

25

IV&V team analysis
requirements

Turn-around time

Targeted defect types

Characteristics of tools
available

Level of assurance and
verification needed

Experience of the team
with specific tools

IV&V Project scope

Mission criticality

Presenter
Presentation Notes
- Analysis characteristics of the tool (number of false positives/negatives, technique, run time)

- Analysis that is targeted at finding all cases of a similar type of defect, e.g. buffer overflow, may benefit from the use of multiple tools that are capable of identifying that particular defect

- Experience of the team with the available tools (SWAT and members of the Static Code Analysis Working Group can help)

- Analysis that is focused on a specific highly critical module or in support of anomaly investigation may want to employ the most robust tools available regardless of computational cost

- Level of assurance you must provide

- If formal verification of a particular piece of source code is desired to prove the absence of certain run-time defects:
Requires formal methods-based abstract interpretation approach (e.g. Polyspace tool)
Verifies program execution, for each instruction, taking into account all possible values of every variable at every point in the code

- Consider further evaluation of some static code analysis results in the ITC JSTAR lab with dynamic analysis if a simulation environment is available

S
W

A
T

Selecting Appropriate Tools

26

S
W

A
T

Customizing to Support Analysis

27

Zzzzz

Zzzzz Zzzzz !!!

SWAT is doing
things to help you

too!

Presenter
Presentation Notes
- Additional benefits from static code analysis tools can be realized from customization

S
W

A
T

Customizing to Support Analysis

28

Additional benefits from static
code analysis tools can be

realized from customization

Understand

Perl API

Metrics, best practices,
other rules or
conventions

Standards verification

Klocwork

Abstract Syntax Tree
checks such as

unnecessary negative
value testing for

unsigned integers

Steep learning curve

Polyspace

Support ICD verification

Simulate normal
working conditions of

software

Data range specification

Presenter
Presentation Notes
- Custom checks provide the potential to improve the capability to search for domain specific defects that have been identified as a possible risk area

- Simple custom checks which are basically pattern matching can still be useful to help locate portions of code for further IV&V manual code analysis

- SWAT investigation into the extensibility of several tools has shown that the vendors limit the visibility into the internal workings of the tool and the information available to the customer checkers, so there are limitations specific to each tool as to what kind of checkers can be created

- Understand provides CodeCheck for standards verification:
CodeCheck can be used to verify naming guidelines, metric requirements, published best practices, or any other rules or conventions
Perl API scripts can be based on publicly visible built-in Understand scripts

- Klocwork:
Learning curve is relatively steep
One basic example using the basic Abstract Syntax Tree (AST) would be to find any unnecessary negative value testing for unsigned integers
A more complex example that involves tracking a value through code path analysis would be checking whether a data object is ever range-checked before being passed to a function

- Polyspace supports specification of possible data ranges:
Data Range Specification (DRS) feature allows you to set constraints on data ranges, e.g. with global variables or input parameters to functions
DRS can be used to simulate normal working conditions of the software and to support verification of certain ICD requirements for example

S
W

A
T

Leveraging Historical Analysis Data

29

Historical data can be used to
further extend the benefits of

static code analysis tools

Code level metrics and
quality attributes

Focus future analysis

SWAT is researching
prior code defects
that have been
identified by IV&V to
determine what tool
or approach was
utilized

Presenter
Presentation Notes
- Historical data can be used to further extend the benefits of static code analysis tools

- Code level metrics or quality attributes can be captured for each set of source code analyzed to help gather historical information

- Data will then be used to help focus future analysis efforts on similar projects and to support evaluation of the effectiveness of both the processes and tools that were utilized

S
W

A
T

Reviewing Ongoing Efforts

30

Static Code Analysis Working
Group

Documenting lists of checks
that can be safely disabled or
output ignored per tool given

the target domain

Documenting lists of required
checks that should be enabled

per tool given the target
domain

SWAT

New Tool Evaluation
Continuing evaluation of tools

based on both additional
capability (e.g. formal

methods-based abstract
interpretation) and target

language support (e.g. Ada)

Current Tool Evaluation
Comparing tool setup, use and
resulting output for the same

source code drop across
various tools

S
W

A
T

Taking Questions

31

Contact us at: ivv-swat@lists.nasa.gov

mailto:ivv-swat@lists.nasa.gov

	Extending Benefits of Static Code Analysis Tools
	Outline
	Setting Context
	Identifying Types of Code Defects
	Identifying Types of Code Defects
	Identifying Types of Code Defects
	Identifying Types of Code Defects
	Preparing for Analysis
	Preparing for Analysis
	Preparing for Analysis
	Preparing for Analysis
	Preparing for Analysis
	Preparing for Analysis
	Preparing for Analysis
	Maximizing Tool Effectiveness
	Maximizing Tool Effectiveness
	Maximizing Tool Effectiveness
	Maximizing Tool Effectiveness
	Maximizing Tool Effectiveness
	Maximizing Tool Effectiveness
	Maximizing Tool Effectiveness
	Selecting Appropriate Tools
	Selecting Appropriate Tools
	Selecting Appropriate Tools
	Selecting Appropriate Tools
	Selecting Appropriate Tools
	Customizing to Support Analysis
	Customizing to Support Analysis
	Leveraging Historical Analysis Data
	Reviewing Ongoing Efforts
	Taking Questions

