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Formal Methods

 Formal methods are mathematically based techniques for specification,
development and verification of systems, both hardware and software.

* The use of formal methods approaches can help to eliminate errors early
In the design process.

* Practitioners have also recognized that they can make searching for
reusable components more effective by having formal specifications of
components.

Current Formal Methods activities within NASA/Army, and International
Formal Methods community.

» Pockets of expertise within NASA (specifically ARC, JPL, LaRC) and
Army.

e Tools and techniques in use within NASA and Army but not widely used
on projects and missions.

» International Formal Methods Community



Problem/Approach

Formal Methods

General Problem

System/Hardware/Software complexity

Inadequate requirements specifications /
misinterpretation of natural language
Significant number of problems introduced
due to vague requirements

Significant number of safety and reliability
problems are traced to incorrect
performance or behavior specifications, or
incorrect interfaces

Approach

Provide accurate and appropriate
specifications of required system behavior
using Formal Methods

Develop requirement specification as Formal

Specification (using formal semantics) to
eliminate misinterpretation of vague and
incomplete natural language requirements

Use Formal methods to prove safety
properties derived from safety analyses
Use Formal Methods and deductive
apparatus to prove correctness of system
behavior and interfaces



Problem/Approach

Formal Methods

Specific Problem

 Formal Methods Learning Process
Difficult for new users

o Select development tools
No time to learn all the tools
Inadequate resource

 Budget and Schedule constraints

» Differences in priorities between
Research and Production
environments

Approach

» Develop specific project related case studies and
provide examples for potential users

 Based on the project size and resources available,
select appropriate Formal Methods development
techniques and tools

e  Support program development and in parallel prove
potential savings

 Many researchers focus on development of new
techniques and tools

*  Production or development programs are concerned
with delivery of a product

 Need to build bridges between the research and
production environments



Challenges

Formal Methods

High cost of some commercial development tools.

Open source free tools do not have adequate training
material and support.

Formal Methods tools require extensive learning process.

Die-hard Systems and Hardware Engineers are not
convinced of the importance of software.



Developing TripleVoter Model

Formal Methods

Double-click the TripleVoter operator to begin modeling.

Select all variables (speedSensorl, speedSensor2, speedSensor3,
speedOut, minorError, majorError, and compareThreshold). Drag them onto
the diagram.

Select the compareThreshold local variable, modify it through Properties -
Use, and change its use to Out.
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Implementing Model Logic

Formal Methods

Connect speedSensorX to the “+” input and speedSensorX to the “-“ input of
the New Minus operator.

Connect speedSensorl, speedSensor2, and speedSensor3 to the first input
of each New Minus operator.

Connect all outputs of the New Minus operators to the inputs of the Abs
operators.
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Completing The Model Logic

Formal Methods
Complete other logic components by drag and drop or connections.
Add new If..Then..Else operators () to the diagram.

Add comments to model for readability

Design Verification — Design Verifier can be used to develop properties
that can be proven by formal methods.
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Army’s experience and Return on Investment

Formal Methods

Formal methods approach using SCADE method found
144 defects their traditional IV&V would miss (73% of all
defects found)

Estimating it would cost approximately Origin of Defect
3500 man hours at $100 per man hour to Detection
fix the 144 defects later in the lifecycle Manual V&V

Early defect removal savings is $350K

The cost to perform formal methods
analysis: -$137K o

Net savings of $213K or 5% of the total Checking
project

Savings could be even higher if defect detected earlier

m Model Creation
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The Army “V” concept
Where are faults introduced, discovered and cost for removal

Requirements ’x‘ Acceptance
Engineering %, Test
System -, A System
Design 70%, 3.5% 10%, 50.5% Test
Soft L
oftware * K :
Architectural % 10x A Integration
: . R Test
Design * o
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Component "" .." :
Software %, » unit
Sei 3 5 ” Test
. X :’
Source: NIST Planning report 02-3, 'x‘ .
“The Economic Impacts of Inadequate ‘X s
Infrastructure for Software Testing”,
May 2002. Code
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NASA Cost overruns
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NASA MSFC Experience in this study

Formal Methods

Using open source development environments
— B-Tool kit

— Rodin Event B

— EA UML

— Integrated Rodin Event B and UML B

Currently migrating all the work to the integrated Rodin Event
B and UML B.

Developed top level diagram and state machine in UML B,
and used auto translator to translate into Rodin Event B.

Using Rodin Event B platform for detailed refinement.
The community is working on auto coding from Event B.
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UML-B Statemachine

Formal Methods
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Auto Translation to Event B
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# Event-B - Engine Phases and Modes/Engine Phases and Modes.bum - Rodin Platform
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Event B Editor
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% Event-B - NASA-CASE-2011/Engine_ini_valve_status_o.bum - Rodin Platform
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Event B prettyprint
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NASA/Army Experience
-Learning curve

Formal Methods
* Unlike other tools, Formal Methods requires serious study
— Formal Methods Language (B, Z...)

— Formal Methods Development platform (Rodin, Event — B...UML,
UML-B...)

— Mathematical symbols, rules, logic...

e Training on Formal Methods is necessary
— Engineers with better understanding of the project
— Eliminate errors
— Reduce Design complications and time
— Encourage Engineers with better mathematics and science

e Easy Is not the best solution for NASA and Army
— Easy tools are easy to sell, but not able to solve our real problems
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Recommendations

Formal Methods

High cost tool

— Powerful, but not affordable to most of the organizations

— Army used SCADE and Simulink with Design Verifier as a modeling tool.
Open Source

— No cost, but high learning curve and lack of support

— Training program will significantly reduce the learning curve, this can be used
for large community.

Recommendations:
— Project requiring immediate results may need to use high cost tools.

— Continue monitoring open source tools (e.g. Integrated Rodin Event B and
UML B) which will likely become more advanced in the future.
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Results

Formal Methods

Formal methods can have significant cost savings.

Defects can be found earlier when easier and cheaper to fix
(cf. Army experience).

While FMs are difficult to use and learn, a typical engineer
can use them successfully when given appropriate support.

Numerous tools are available. Choice is determined by:
— Cost

— Support

— Deadlines

Free (or cheap) is not necessarily best.
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Future Plans

Formal Methods

Continue monitoring new and emerging Formal Methods techniques
for practical usefulness and applicability to critical NASA/Army
systems and software development activities.

Complete Case study for both NASA/Army subsystems.

Army is utilizing Formal Methods techniques for current programs.
Complete Guidebook with road maps for future users.

Pursue training opportunities with NASA STEP training office.

Continue to emphasize awareness in Formal Methods and related
training program
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Contact Information
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— mike.hinchey@lero.ie

e Josh McNell
— Josh.McNeill@us.army.mil

22



