Presentation Abstract

Presentation
Title

Real-Time Operating Systems 101

Author(s) Richard Kowalski

Point of Contact Phil Loftis

(POC)

POC E-mail Philip.D.Loftis @ nasa.gov

POC Fax 304.367.2035

Presentation This presentation explains the difference between real-time operating systems (RTOSs) and
Abstract general purpose operating systems. It also delves into the following components, features, and

services that are a part of the RTOS so one can develop a working knowledge of its flexible and
robust real-time behavioral requirements. A task (process) is an abstraction of a running
program and is the logical unit of work scheduled by the RTOS. It is typically represented by a
task control block (TCB) data structure that contains its state of execution. A thread is a
lightweight process that shares resources with other processes or threads. Each thread must
run from within some process and make use of the resources of that process. The RTOS
provides thread management. RTOSs must provide the following specific functions with respect
to tasks: scheduling, dispatching, intercommunication and synchronization. The kernel of the
RTOS is the smallest portion that provides for these functions. A scheduler determines which
task will run next in a multitasking system, while a dispatcher performs the necessary
administration to start that task. Inter-task communication and synchronization assures that the
tasks cooperate via mutexes, semaphores and messages. The RTOS kernel also provides the
following services: security management, file management, memory management to support a
dedicated hardware Memory Management Unit (MMU), time management, 1/O services,
resource allocation and interrupt handling. RTOS behavior should be known via determinism.
Determinism is the ability of the RTOS to meet deadlines, minimize jitter and bound priority
inversion. This also includes the interrupt latency (how fast an interrupt can be serviced), the
maximum time it takes for every system call, and the maximum time the RTOS and device
drivers mask the interrupts. An RTOS is designed for embedded safety-critical systems and has
timing constraints it must meet. If it cannot respond to events (interrupts, task switches,
completing a calculation, etc.) within a specific time, then the result is in error. “Soft” real-time
systems have some flexibility in the timing. “Hard” real-time systems have no flexibility for critical
deadlines. An RTOS has to be multi-threaded and preemptible and must also support error
handling, fault protection, and multiprocessing (multiple CPU’s). It must support a scheduling
method that guarantees response time to critical tasks. The method of scheduling can be
predetermined logical sequences verified by Rate Monotonic Analysis (RMA) or Earliest
Deadline First (EDF). It can be priority-based preemptive scheduling in a multitasking
environment. Another method is Round Robin time slice scheduling at the same priority for all
tasks. The context switching (dispatching) time is the most important speed issue for RTOSs.
Context switching is how quickly a task can be saved, and the next task made ready to run.
Other RTOS speed issues are the time it takes for a system call to complete. Task threads must
be able to be given a static or dynamic priority. Priority inversion is a problem where a higher
priority task is blocked by a low priority task that has exclusive access to a resource. The
problem occurs when a medium priority task is running, preventing the low priority one from
finishing and releasing the resource. Priority inheritance has to exist and is a temporary state
used to resolve priority conflicts.




