

An Overview of ESA Software Product Assurance Services

M. Garcia, R. Prades ESA D/TEC-QQS

SAS 2007 Morgantown, West Virginia, USA September 25-27, 2007

Presentation Overview

- Software product assurance context in ESA
- Software product assurance services provided to European space projects and industry
 - Software Product Evaluation for Conformity (SPEC)
 - Software Safety and Dependability Evaluation (RAMS)
 - Software Process Assessment (S4S)

SW PA Context in ESA

- ESA Directorate Organization
 - Program Directorates: D/SCI, D/EOP, D/HME, ...
 - Technical Directorate: D/TEC
 - Systems design
 - Electrical Engineering
 - Mechanical Engineering
 - Quality
 - Materials
 - Component
 - Software, Dependability and Safety
- Project teams/technical support

SW PA Context in ESA

D/TEC-QQS

- SW PA support to projects
 - Meeting requirements specified in applicable documentation → development of methods, approaches, tools
- R&D in the SW PA domain with focus on present and future needs of projects and industrial partners
 - Handbooks containing guidance on how to apply SW PA in projects
 - Services
- Services
 - Software Product Evaluation for Conformity
 - Software Safety and Dependability Evaluation
 - Software Process Assessment

What is S4S?

- A method of evaluating space software processes
- ISO 15504 (Process Assessment) conformant
- Can be tailored to different classes of safety-critical software

Scope

- Processes include acquisition, supply, operation, engineering, supporting, management, process improvement, resource and infrastructure and reuse
- Can select which processes to assess
- Each process is assessed on a scale of capability

- 25 assessment performed
 - Prime contractors
 - Small and medium enterprises
- Performed on a voluntary basis
 - few in response to specific project requirements
 - Input to improvement programs
 - Confirmation of SW development capabilities towards customers

Assessment organization

- Pre-assessment visit
 - Selection of processes
 - Determination of the capability levels to assess
 - Schedule and participants
- Assessment

Improvement Workshop

- Identification of improvement opportunities from assessment report
- Discussion and setup of improvement projects

Risk Reduction with S4S

What is R4S?

- An extension of S4S with a risk dimension integrated in the method
- Basic idea: use risk analysis post-assessment to identify most critical processes for improvement
- Relies on correlations between commonly known risks & S4S processes

Objectives

- Identification, assessment and management of process related risks
- Link between process and risk management
- Supports identification and prioritization of improvement actions to
 - improve processes towards target capability levels
 - reduce process-related risks to an acceptable level

Risk Reduction with S4S

Software Product Evaluation for Conformity (SPEC)

Software Product Evaluation for Conformity (SPEC)

ESA's Initiative on Software Product Evaluation

- Provide a framework to evaluate, and possibly confirm conformity of a space software product.
- Provide a good bases for specifying the non-functional requirements through a quality model
- Reduce significantly the cost associated with the product development by adopting a quality model from the beginning of a project.
- Increase the ability to produce quality software and to specify and assess this quality

Software Product Evaluation for Conformity (SPEC) The context

- ECSS-Q80B "Software product assurance," defines requirements on Software product quality assurance
 - Definition or adoption of a quality model
 - Definition of a metrication program
 - Definition of metrics
 - Verification of the achievements
 - Metrics trend
 - Improvement actions
- HB-Q80-04 "Software metrication programme definition and implementation"

Software Product Evaluation for Conformity (SPEC) SPEC method

- SPEC is a method to evaluate a Space Software Product by measuring its quality, based on a tailored quality model.
- SPEC defines:
 - Quality Model
 - Evaluation framework

Software Product Evaluation for Conformity (SPEC) SPEC on on-board OS

Goals of the evaluation:

- Check the usability of the SPEC scheme for Open Source Software
- Check whether the OS satisfies the SPEC criteria for mission critical software.
- Obtain substantial information about its features and determine potential areas for (future) in depth analysis
- Identify weaknesses and potential areas of improvements for the SPEC scheme

Software Product Evaluation for Conformity (SPEC) SPEC on on-board OS

Constraints of the evaluation

- Product was an Open Source Software with a limited set of documentation
- The provider did not issue any documentation about the verification activities (methodology and results)

Evaluation results

- Methodological SPEC related results (SPEC to OSS)
- Software product (On-board OS) related results

Software Product Evaluation for Conformity (SPEC) SPEC on GSI

- Goals of the evaluation
 - Evaluation of GSI in a generic scenario (i.e. typical scientific mission)
 - Application of SPEC to real project
 - SPEC as a mean to improve software products
 - Use of S4S* for process related goal properties

(*) Spice for Space : Process assessment method compliant with ISO15504

Software Product Evaluation for Conformity (SPEC) SPEC on SGI -- Phases

Phase I: Baseline Evaluation

- Tailoring of Quality Model (based on criticality classes)
- Evaluation Plan & Data Collection
- Evaluation Report (with recommendations)

Phase II: Improvement

Implementation of recommendations (including specific process improvement actions)

Phase III: Delta Evaluation

- Re-measurement phase (including delta S4S)
- Re-issue of Evaluation Report (21 detailed recommendations)

Software Product Evaluation for Conformity (SPEC) Conclusions

- Identification of recommendations allows the implementation of improvements in some processes of the software development and in further versions of the software products.
- Although SPEC was not meant to be used "after the fact" on existing products, it was demonstrated that SPEC can be applied successfully on finalized SW products.
- SPEC needs to be tailored before it can be used to evaluate OSS.
- SPEC is being updated based on the experience gained during its application on real projects.

Software Safety and Dependability Evaluation

Software Safety and Dependability Evaluation

- ESA's Initiative on Software Dependability and Safety Evaluations
 - Evaluate dependability and safety of software to reduce the risk of mission failures
 - Help assure correct implementation of system PA requirements
 - Evaluate the applicability and usefulness of selected techniques
 - Identify improvements of the techniques

Software Safety and Dependability Evaluation The context

- ECSS-Q80B "Software product assurance," defines requirements on safety and mission critical software
 - Identification of the criticality of the software function in the system context
 - Software dependability and safety analysis to be performed
 - Design of the software to minimize number of critical components
 - Use of criticality for tailoring of the "development rigour"
 - Special rules for handling of critical software components
 - Organizational constraints
- HB-Q80-03 " Methods and techniques to support the assessment of software dependability and safety"

Software Safety and Dependability Evaluation SFMECA on GSI

- Software Failure Modes, Effects and Criticality Analysis performed on the Spacecraft Control and Operations System used for spacecraft operation
 - A typical scientific mission was used as a reference
 - Performed starting from top-level requirements, then analyzing the failure modes of the SW components
- Main result was the criticality level assigned to SW components based on the severity of the consequences of failures

Software Safety and Dependability Evaluation Code Analysis on GSI

- Applied to components having highest criticality and highest density of severe failure modes associated
- Based on checklist derived from applicable coding standards
- Main output was the report on coding standard rules violated and metrics values.

Software Safety and Dependability Evaluation Robustness and stress testing of on-board OS

- This off-the-shelf open-source real time operating system is broadly used in space applications
- Tested against the available "specifications"
- Robustness-tested with singular and boundary input values, exercising error handling mechanisms
- Stress-tested in conditions of extreme workload
- Faults mainly from robustness tests:
 - Incorrect control flow
 - Memory alignment/Illegal instruction exceptions
 - Unexpected error codes returned

Software Safety and Dependability Evaluation HSIA on scientific instrument

- Hardware-Software Interaction Analysis performed on a science payload of the space observatory
- HW failure modes extracted from FMECA (some newly identified from system analysis)
- Several issues identified:
 - Lack of failure detection and recovery mechanisms
 - Deficient failure reporting
 - System FMECA Report updates necessary

Software Safety and Dependability Evaluation Hazard Analysis on a Flight Application Software

- Methodology used from ESA standard HB-Q80-03
- Based on list of feared events and severity levels derived from system-level analyses
- Software Fault Tree Analysis starting from selected feared event, to identify basic events; then SW FMECA on the SW functions/components that can be traced to the basic events
- As a result, the combination of techniques allowed the identification of potential hazard scenarios and investigation of hazard reduction/control mechanisms

Software Safety and Dependability Evaluation Conclusions

- Systematic identification of SW failure modes and criticality classification of SW components
- To drive the verification activities and the "rigour" of the development, based on the criticality classification of the SW components
- Verification that for all potential HW failures the SW reaction is correctly specified
- Improvement of system-level Failure Detection,
 Isolation and Recovery (FDIR) through Integration of SW-level analyses results into system-level analyses