An Overview of ESA Software Product Assurance Services

M. Garcia, R. Prades
ESA D/TEC-QQS

SAS 2007
Morgantown, West Virginia, USA
September 25-27, 2007
Presentation Overview

- Software product assurance context in ESA
- Software product assurance services provided to European space projects and industry
 - Software Product Evaluation for Conformity (SPEC)
 - Software Safety and Dependability Evaluation (RAMS)
 - Software Process Assessment (S4S)
SW PA Context in ESA

- **ESA Directorate Organization**
 - Program Directorates: D/SCI, D/EOP, D/HME, …
 - Technical Directorate: D/TEC
 - Systems design
 - Electrical Engineering
 - Mechanical Engineering
 - Quality
 - Materials
 - Component
 - Software, Dependability and Safety

- **Project teams/technical support**
SW PA Context in ESA

- **D/TEC-QQS**
 - SW PA support to projects
 - Meeting requirements specified in applicable documentation → development of methods, approaches, tools
 - R&D in the SW PA domain with focus on present and future needs of projects and industrial partners
 - Handbooks containing guidance on how to apply SW PA in projects
 - Services
 - Services
 - Software Product Evaluation for Conformity
 - Software Safety and Dependability Evaluation
 - Software Process Assessment
Software Process Assessment (S4S)
Software Process Assessment (S4S)

• What is S4S?
 – A method of evaluating space software processes
 – ISO 15504 (Process Assessment) conformant
 – Can be tailored to different classes of safety-critical software

• Scope
 – Processes include acquisition, supply, operation, engineering, supporting, management, process improvement, resource and infrastructure and reuse
 – Can select which processes to assess
 – Each process is assessed on a scale of capability
Software Process Assessment (S4S)

- 25 assessment performed
 - Prime contractors
 - Small and medium enterprises
- Performed on a voluntary basis
 - few in response to specific project requirements
 - Input to improvement programs
 - Confirmation of SW development capabilities towards customers
Software Process Assessment (S4S)

- **Assessment organization**
 - Pre-assessment visit
 - Selection of processes
 - Determination of the capability levels to assess
 - Schedule and participants
 - Assessment

- **Improvement Workshop**
 - Identification of improvement opportunities from assessment report
 - Discussion and setup of improvement projects
Risk Reduction with S4S

• **What is R4S?**
 – An extension of S4S with a risk dimension integrated in the method
 – Basic idea: use risk analysis post-assessment to identify most critical processes for improvement
 – Relies on correlations between commonly known risks & S4S processes

• **Objectives**
 – Identification, assessment and management of process related risks
 – Link between process and risk management
 – Supports identification and prioritization of improvement actions to
 • improve processes towards target capability levels
 • reduce process-related risks to an acceptable level
Risk Reduction with S4S

Business Goals, Customer

Target capability profile

Process Assessment

Actual profile

R4S

Process Improvement

Improvement actions

Process related risks

Risk Management

Risks to be mitigated

Mitigated risks

Acceptable risks
Software Product Evaluation for Conformity (SPEC)
Software Product Evaluation for Conformity (SPEC)

• ESA’s Initiative on Software Product Evaluation
 – Provide a framework to evaluate, and possibly confirm conformity of a space software product.
 – Provide a good bases for specifying the non-functional requirements through a quality model
 – Reduce significantly the cost associated with the product development by adopting a quality model from the beginning of a project.
 – Increase the ability to produce quality software and to specify and assess this quality
Software Product Evaluation for Conformity (SPEC)

The context

- **ECSS-Q80B** “Software product assurance,” defines requirements on Software product quality assurance
 - Definition or adoption of a quality model
 - Definition of a metrication program
 - Definition of metrics
 - Verification of the achievements
 - Metrics trend
 - Improvement actions
- **HB-Q80-04** “Software metrication programme definition and implementation”
Software Product Evaluation for Conformity (SPEC)

SPEC method

- SPEC is a method to evaluate a Space Software Product by measuring its quality, based on a tailored quality model.

- SPEC defines:
 - Quality Model
 - Evaluation framework
Software Product Evaluation for Conformity (SPEC)
SPEC on on-board OS

• **Goals of the evaluation:**
 – Check the usability of the SPEC scheme for Open Source Software
 – Check whether the OS satisfies the SPEC criteria for mission critical software.
 – Obtain substantial information about its features and determine potential areas for (future) in depth analysis
 – Identify weaknesses and potential areas of improvements for the SPEC scheme
Software Product Evaluation for Conformity (SPEC)
SPEC on on-board OS

• **Constraints of the evaluation**
 – Product was an Open Source Software with a limited set of documentation
 – The provider did not issue any documentation about the verification activities (methodology and results)

• **Evaluation results**
 – Methodological SPEC related results (SPEC to OSS)
 – Software product (On-board OS) related results
Software Product Evaluation for Conformity (SPEC)
SPEC on GSI

• Goals of the evaluation
 – Evaluation of GSI in a generic scenario (i.e. typical scientific mission)
 – Application of SPEC to real project
 – SPEC as a mean to improve software products
 – Use of S4S* for process related goal properties

(*) Spice for Space: Process assessment method compliant with ISO15504
Software Product Evaluation for Conformity (SPEC)
SPEC on SGI -- Phases

Phase I: Baseline Evaluation
- Tailoring of Quality Model (based on criticality classes)
- Evaluation Plan & Data Collection
- Evaluation Report (with recommendations)

Phase II: Improvement
- Implementation of recommendations (including specific process improvement actions)

Phase III: Delta Evaluation
- Re-measurement phase (including delta S4S)
- Re-issue of Evaluation Report (21 detailed recommendations)
Software Product Evaluation for Conformity (SPEC) Conclusions

- Identification of recommendations allows the implementation of improvements in some processes of the software development and in further versions of the software products.

- Although SPEC was not meant to be used “after the fact” on existing products, it was demonstrated that SPEC can be applied successfully on finalized SW products.

- SPEC needs to be tailored before it can be used to evaluate OSS.

- SPEC is being updated based on the experience gained during its application on real projects.
Software Safety and Dependability Evaluation
Software Safety and Dependability Evaluation

- ESA’s Initiative on Software Dependability and Safety Evaluations
 - Evaluate dependability and safety of software to reduce the risk of mission failures
 - Help assure correct implementation of system PA requirements
 - Evaluate the applicability and usefulness of selected techniques
 - Identify improvements of the techniques
Software Safety and Dependability Evaluation

The context

• **ECSS-Q80B** “Software product assurance,” defines requirements on safety and mission critical software
 – Identification of the criticality of the software function in the system context
 – Software dependability and safety analysis to be performed
 – Design of the software to minimize number of critical components
 – Use of criticality for tailoring of the “development rigour”
 – Special rules for handling of critical software components
 – Organizational constraints

• **HB-Q80-03** “Methods and techniques to support the assessment of software dependability and safety”
Software Safety and Dependability Evaluation
SFMECA on GSI

- Software Failure Modes, Effects and Criticality Analysis performed on the Spacecraft Control and Operations System used for spacecraft operation
 - A typical scientific mission was used as a reference
 - Performed starting from top-level requirements, then analyzing the failure modes of the SW components
- Main result was the criticality level assigned to SW components based on the severity of the consequences of failures
Software Safety and Dependability Evaluation
Code Analysis on GSI

- Applied to components having highest criticality and highest density of severe failure modes associated
- Based on checklist derived from applicable coding standards
- Main output was the report on coding standard rules violated and metrics values.
Software Safety and Dependability Evaluation
Robustness and stress testing of on-board OS

- This off-the-shelf open-source real time operating system is broadly used in space applications
- Tested against the available “specifications”
- Robustness-tested with singular and boundary input values, exercising error handling mechanisms
- Stress-tested in conditions of extreme workload
- Faults mainly from robustness tests:
 - Incorrect control flow
 - Memory alignment/Illegal instruction exceptions
 - Unexpected error codes returned
Software Safety and Dependability Evaluation

HSIA on scientific instrument

- Hardware-Software Interaction Analysis performed on a science payload of the space observatory
- HW failure modes extracted from FMECA (some newly identified from system analysis)
- Several issues identified:
 - Lack of failure detection and recovery mechanisms
 - Deficient failure reporting
 - System FMECA Report updates necessary
Software Safety and Dependability Evaluation
Hazard Analysis on a Flight Application Software

- Methodology used from ESA standard HB-Q80-03
- Based on list of feared events and severity levels derived from system-level analyses
- Software Fault Tree Analysis starting from selected feared event, to identify basic events; then SW FMECA on the SW functions/components that can be traced to the basic events
- As a result, the combination of techniques allowed the identification of potential hazard scenarios and investigation of hazard reduction/control mechanisms
Software Safety and Dependability Evaluation
Conclusions

- Systematic identification of SW failure modes and criticality classification of SW components
- To drive the verification activities and the “rigour” of the development, based on the criticality classification of the SW components
- Verification that for all potential HW failures the SW reaction is correctly specified
- Improvement of system-level Failure Detection, Isolation and Recovery (FDIR) through Integration of SW-level analyses results into system-level analyses