Report on results of Discriminant Analysis experiment.
11 March 2002

Norman F. Schneidewind, Fellow, IEEE
Naval Postgraduate School
Monterey, CA 93943, USA
Voice: (831) 656-2719
Fax : (831) 372-0445
nschneid@nps.navy.mil

Summary

This is Report #1 in a series of reports on the NASA IV&V Facility Project “Investigation of the Risk to Software Reliability and Maintainability of Requirements Changes”. This report covers the discriminate analysis experiment. In order to continue to make progress in software measurement, as it pertains to reliability and maintainability, we must shift the emphasis from design and code metrics to metrics that characterize the risk of making requirements changes. Although these software attributes can be difficult to deal with due to the fuzzy requirements from which they are derived, the advantage of have early indicators of future software problems outweighs this inconvenience. We developed an approach for identifying requirements change risk factors as predictors of reliability and maintainability problems. Our case example consists of twenty-four Space Shuttle change requests, nineteen risk factors, and the associated failures and software metrics. The approach can be generalized to other NASA domains with numerical results that would vary according to the application.

1. Introduction

While software design and code metrics have enjoyed some success as predictors of software quality attributes such as reliability [5, 6, 7, 8, 11, 13, 14], the measurement field is stuck at this level of achievement. If measurement is to advance to a higher level, we must shift our attention to the front-end of the development process, because it is during system conceptualization that errors in specifying requirements are inserted into the process and adversely affect our ability to maintain the software. A requirements change may induce ambiguity and uncertainty in the development process that cause errors in implementing the changes. Subsequently, these errors propagate through later phases of development and maintenance. These errors may result in significant risks associated with implementing the requirements. For example, reliability risk (i.e., risk of faults and failures induced by changes in requirements) may be incurred by deficiencies in the process (e.g., lack of precision in requirements). Although requirements may be specified correctly in terms of meeting user expectations, there could be significant risks associated with their implementation. For example, correctly implementing user requirements could lead to excessive system size and complexity with adverse effects on reliability and maintainability or there could be a demand for project resources that exceeds the available funds, time, and personnel skills. Interestingly, there has been considerable discussion of project risk
(e.g., the consequences of cost overrun and schedule slippage) in the literature [1] but not a corresponding attention to reliability and maintainability risk.

Risk in the Webster's New Universal Unabridged Dictionary is defined as "the chance of injury; damage, or loss" [21]. Some authors have extended the dictionary definition as follows: "Risk Exposure=Probability of an Unsatisfactory Outcome*Loss if the Outcome is Unsatisfactory" [1]. Such a definition is frequently applied to the risks in managing software projects such as budget and schedule slippage. In contrast, our application of the dictionary definition pertains to the risk of executing the software of a system where there is the chance of injury (e.g., crew injury or fatality), damage (e.g., destruction of the vehicle), or loss (e.g., loss of the mission) if a serious software failure occurs during a mission. We use risk factors to indicate the degree of risk associated with such an occurrence.

The generation of requirements is not a one-time activity. Indeed, changes to requirements can occur during maintenance. When new software is developed or existing software is changed in response to new and changed requirements, respectively, there is the potential to incur reliability and maintainability risks. Therefore, in assessing the effects of requirements on reliability and maintainability, we should deal with changes in requirements throughout the life cycle.

In addition to the relationship between requirements and reliability and maintainability there are the intermediate relationships between requirements and software metrics (e.g., size, complexity) and between metrics and reliability and maintainability. These relationships may interact to put the reliability and maintainability of the software at risk because the requirements changes may result in increases in the size and complexity of the software that may adversely affect reliability and maintainability. We studied these interactions for the Space Shuttle. For example, assume that the number of iterations of a requirements change -- the "mod level" -- is inversely related to reliability. That is, if many revisions of a requirement are necessary before it is approved, this is indicative of a requirement that is hard to understand and implement safely -- a risk that directly impacts reliability. At the same time, this complex requirement will affect the size and complexity of the code that will, in turn, have deleterious effects on reliability and maintainability.

2. Objectives

Our overall objective was to identify the attributes of software requirements that cause the software to be unreliable. Furthermore, we seek to quantify the relationship between requirements risk and reliability. If these attributes can be identified, then policies can be recommended to the software engineering community for recognizing these risks and avoiding or mitigating them during development. The objective of these policy changes is to prevent the propagation of high-risk requirements through the various phases of software development.

Given the lack of emphasis in measurement research on the critical role of requirements, we investigated the following issues:
- What is the relationship between requirements attributes and reliability and maintainability? That is, are there requirements attributes that are strongly related to the occurrence of defects and failures in the software?

- What is the relationship between requirements attributes and software attributes like complexity and size? That is, are there requirements attributes that are strongly related to the complexity and size of software?

- Is it feasible to use requirements attributes as predictors of reliability and maintainability? That is, can static requirements change attributes like the size of the change be used to predict reliability in execution (e.g., failure occurrence) and the maintainability of this code?

- Which requirements attributes pose the greatest risk to reliability and maintainability?

3. Research Plan

Our research was aimed at conducting experiments to see whether it is feasible to develop a mapping between changes in requirements to changes in software complexity and reliability. In other words, we investigated whether the following implications hold, where \(R \) represents requirements, \(C \) represents complexity, and \(F \) represents failure occurrence (i.e., reliability):

\[
\Delta R \Rightarrow \Delta C \Rightarrow \Delta F. \]

We include changes in size and documentation in changes in complexity. This approach proved successful using the Shuttle requirements risk factors, complexity metrics, and failure data. The results indicate that when this approach is applied to the Space Shuttle that the number of faults inserted into the software is reduced. There is no reason to believe that this approach would not be successful if and when comparable data from other NASA projects become available. We were able to judge whether our approach was a success by the statistical significance of the results, as will be explained.

By retrospectively analyzing the relationship between requirements and reliability, we were able to construct models that can predict reliability as a function of requirements changes. In order to quantify the effect of a requirements change, we used various risk factors that are defined as the attribute of a requirement change that can induce reliability or project risk. Various examples of risk factors are shown in the section Risk Factors. We statistically analyzed specified risk factors to see in what way, if any, they were associated with reliability. In particular, we wanted to identify those factors that have an adverse effect on reliability.

4. Related Research

A number of useful related reliability and maintenance measurement projects have been reported in the literature. Much of the research and literature in software metrics concerns the measurement of code characteristics [10, 12]. This is satisfactory for evaluating product quality and process effectiveness once the code is written. However, if organizations use measurement plans that are limited to measuring code, these plans will be deficient in the following ways: incomplete, lack coverage (e.g., no requirements analysis and design), and start too late in the process. For a measurement plan to be effective, it must start with requirements and continue through to operation and maintenance. Since requirements characteristics directly affect code
characteristics and hence reliability and maintainability, it is important to assess their impact when requirements are specified.

Briand, et al, developed a process to characterize software maintenance projects [2]. They present a qualitative and inductive methodology for performing objective project characterizations to identify maintenance problems and needs. This methodology aids in determining causal links between maintenance problems and flaws in the maintenance organization and process. Although the authors have related ineffective maintenance practices to organizational and process problems, they have not made a linkage to risk assessment.

Pearse and Oman applied a maintenance metrics index to measure the maintainability of C source code before and after maintenance activities [15]. This technique allowed the project engineers to track the "health" of the code as it was being maintained. Maintainability is assessed but not in terms of risk assessment.

Pigoski and Nelson collected and analyzed metrics on size, trouble reports, change proposals, staffing, and trouble report and change proposal completion times [17]. A major benefit of this project was the use of trends to identify the relationship between the productivity of the maintenance organization and staffing levels. Although productivity was addressed, risk assessment was not considered.

Sneed reengineered a client maintenance process to conform to the ANSI/IEEE Standard 1219, Standard for Software Maintenance [19]. This project is a good example of how a standard can provide a basic framework for a process and can be tailored to the characteristics of the project environment. Although applying a standard is an appropriate element of a good process, risk assessment was not addressed.

Stark collected and analyzed metrics in the categories of customer satisfaction, cost, and schedule with the objective of focusing management's attention on improvement areas and tracking improvements over time [20]. This approach aided management in deciding whether to include changes in the current release, with possible schedule slippage, or include the changes in the next release. However, the author did not relate these metrics to risk assessment.

An indication of the back seat that software risk assessment takes to hardware, Fragola reports on probabilistic risk management for the Space Shuttle. Interestingly, he says: “The shuttle risk is embodied in the performance of its hardware, the careful preparation activities that its ground support staff take between flights to ensure this performance during a flight, and the procedural and management constraints in place to control their activities.” [4]. There is not a word in this statement or in his article about software! Another hardware-only risk assessment is by Maggio, who says: “The current effort is the first integrated quantitative assessment of the risk of the loss of the shuttle vehicle from 3 seconds prior to liftoff to wheel-stop at mission end.” Again, there was not a word about software [9].

Pfleeger lays out a roadmap for assessing project risk that includes risk prioritization [16], a step that we address with the degree of confidence in the statistical analysis of risk (see Results section).
4. Research Approach

By retrospectively analyzing the relationship between requirements and reliability and maintainability, we were able to identify those risk factors that are associated with reliability and maintainability and we were able to prioritize them based on the degree to which the relationship was statistically significant. In order to quantify the effect of a requirements change, we use various risk factors that are defined as the attribute of a requirement change that can induce adverse effects on reliability (e.g., failure incidence), maintainability (e.g., size and complexity of the code), and project management (e.g. personnel resources).

Table 1 shows the Change Request Hierarchy of the Space Shuttle, involving change requests (i.e., a request for a new requirement or modification of an existing requirement), discrepancy reports (i.e., reports that document deviations between specified and observed software behavior), and failures. We analyzed categories 1 versus 2.1 and 1 versus 2.2.3 with respect to risk factors as discriminants of the categories.

Table 1: Change Request Hierarchy
Change Requests (CRs)
1. No Discrepancy Reports (i.e., CRs with no DRs)
2. Discrepancy Reports
 2.1 No failures (i.e., CRs with DRs only)
 2.2 Failures
 2.2.1 Pre-release failures
 2.2.2 Post-release failures
 2.2.3 Exclusive OR of 2.2.1 and 2.2.2 (i.e., CRs with failures)

4.1 Discriminant Analysis

Using the null hypothesis, Ho: A risk factor is not a discriminator of reliability and maintainability versus the alternate hypothesis H1: A risk factor is a discriminator of reliability and maintainability, we used categorical data analysis to test the hypothesis. A similar hypothesis was used to assess whether risk factors can serve as discriminators of metrics characteristics. We used the requirements, requirements risk factors, reliability, and metrics data we have from the Space Shuttle “Three Engine Out” software (abort sequence invoked when three engines are lost) to test our hypotheses. Samples of these data are shown below.

- Pre-release and post release failure data from the Space Shuttle from 1983 to the present. An example of post-release failure data is shown in Table 2.

Table 2

<table>
<thead>
<tr>
<th>Failure Found On Operational Increment</th>
<th>Days from Release When Failure Occurred</th>
<th>Discrepancy Report #</th>
<th>Severity</th>
<th>Failure Date</th>
<th>Release Date</th>
<th>Module in Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>75</td>
<td>1</td>
<td>2</td>
<td>05-19-97</td>
<td>03-05-97</td>
<td>10</td>
</tr>
</tbody>
</table>
Risk factors for the Space Shuttle *Three Engine Out Auto Contingency* software. This software was released to NASA by the developer on 10/18/95. An example of a partial set of risk factor data is shown in Table 3.

<table>
<thead>
<tr>
<th>Change Request Number</th>
<th>SLOC Changed</th>
<th>Complexity Rating of Change</th>
<th>Criticality of Change</th>
<th>Table 3</th>
<th>Number of Principal Functions Affected</th>
<th>Number of Modifications Of Change Request</th>
<th>Number of Requirements Issues</th>
<th>Number of Inspections Required</th>
<th>Manpower Required to Make Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1933</td>
<td>4</td>
<td>3</td>
<td></td>
<td>27</td>
<td>7</td>
<td>238</td>
<td>12</td>
<td>209.3 MW</td>
</tr>
</tbody>
</table>

- Metrics data for 1400 Space Shuttle modules, each with 26 metrics. An example of a partial set of metric data is shown in Table 4. The table values are the counts per module.

<table>
<thead>
<tr>
<th>Module</th>
<th>Operator Count (unique operators)</th>
<th>Operand Count (unique operands)</th>
<th>Statement Count (executable statements)</th>
<th>Path Count (paths from input node to terminal node in control graph)</th>
<th>Cycle Count (iterations in control graph)</th>
<th>Discrepancy Report Count (deviations between specified and observed software behavior)</th>
<th>Change Request Count (requirements change requests)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>3895</td>
<td>1957</td>
<td>606</td>
<td>998</td>
<td>4</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 5 shows the definition of the Change Request samples that were used in the analysis. Sample sizes are small due to the high reliability of the Space Shuttle. However, sample size is one of the parameters accounted for in the statistical tests that produced significant results in certain cases (see Results section). **Note:** CRs can have multiple instances of DRs, failures, and modules that caused failures. This is why “12”, “9”, and “7” do not add to “24”.

<table>
<thead>
<tr>
<th>Table 5: Definition of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
</tr>
<tr>
<td>Total CRs</td>
</tr>
<tr>
<td>CRs with no DRs</td>
</tr>
<tr>
<td>CRs with DRs only</td>
</tr>
<tr>
<td>CRs with failures</td>
</tr>
<tr>
<td>CRs with modules that caused failures</td>
</tr>
</tbody>
</table>

To minimize the confounding effects of a large number of variables that interact in some cases, a statistical categorical data analysis was performed *incrementally*. We used only one category of risk factor at a time to observe the effect of adding an additional risk factor on the ability to correctly classify change requests that have discrepancy reports (i.e., a report that documents
deviations between specified and observed software behavior) or failures and those that do not. The Mann-Whitney test for difference in medians between categories was used because no assumption need be made about statistical distribution; in addition, some risk factors are ordinal scale quantities (e.g., modification level). Furthermore, because some risk factors are ordinal scale quantities, rank correlation was used to check for risk factor dependencies.

5. Risk Factors

One of the software maintenance problems of the NASA Space Shuttle Flight Software organization is to evaluate the risk of implementing requirements changes. These changes can affect the reliability and maintainability of the software. To assess the risk of change, the software development contractor uses a number of risk factors, which are described below. The risk factors were identified by agreement between NASA and the development contractor based on assumptions about the risk involved in making changes to the software. This formal process is called a risk assessment. No requirements change is approved by the change control board without an accompanying risk assessment. During risk assessment, the development contractor will attempt to answer such questions as: “Is this change highly complex relative to other software changes that have been made on the Space Shuttle?” If this were the case, a high-risk value would be assigned for the complexity criterion. To date this qualitative risk assessment has proven useful for identifying possible risky requirements changes or conversely, providing assurance that there are no unacceptable risks in making a change. However, there has been no quantitative evaluation to determine whether, for example, high risk factor software was really less reliable and maintainable than low risk factor software. In addition, there is no model for predicting the reliability and maintainability of the software, if the change is implemented. Our research addressed both of these issues.

We had considered using requirements attributes like completeness, consistency, correctness, etc. as risk factors [3]. While these are useful generic concepts, they are difficult to quantify. Although some of the following risk factors also have qualitative values assigned, there are a number of quantitative risk factors, and many of the risk factors deal with the execution behavior of the software (i.e., reliability), which is our research interest.

5.1 Space Shuttle Flight Software Requirements Change Risk Factors

The following are the definitions of the nineteen risk factors, where we have placed the risk factors into categories and have provided our interpretation of the question the risk factor is designed to answer. If the answer to a yes/no question is "yes", it means this is a high-risk change with respect to the given risk factor. If the answer to a question that requires an estimate is an anomalous value, it means this is a high-risk change with respect to the given risk factor.

For each risk factor, it is indicated whether there is a statistically significant relationship between it and reliability and maintainability for the software version analyzed. The details of the findings are shown in the Results section. In many instances, there was insufficient data to do the analysis because in these cases the risk factor evaluation forms were incomplete. These cases are indicated below. The names of the risk factors used in the analysis are given in quotation marks.
Complexity Factors

- Qualitative assessment of complexity of change (e.g., very complex); “complexity”. \textbf{Not significant.}

 - Is this change highly complex relative to other software changes that have been made on the Space Shuttle?

- Number of modifications or iterations on the proposed change; “mods”. \textbf{Significant.}

 - How many times must the change be modified or presented to the Change Control Board (CCB) before it is approved?

Size Factors

- Number of lines of code affected by the change; “sloc”. \textbf{Significant.}

 - How many lines of code must be changed to implement the change request?

- Number of modules changed; “mod chg”. \textbf{Not significant.}

 - Is the number of changes to modules excessive?

Criticality of Change Factors

- Criticality of function added or changed by the change request; “crit func” \textit{(insufficient data)}

 - Is the added or changed functionality critical to mission success?

- Whether the software change is on a nominal or off-nominal program path (i.e., exception condition); “off nom path” \textit{(insufficient data)}

 - Will a change to an off-nominal program path affect the reliability of the software?

Locality of Change Factors

- The area of the program affected (i.e., critical area such as code for a mission abort sequence); “critic area” \textit{(insufficient data)}

 - Will the change affect an area of the code that is critical to mission success?

- Recent changes to the code in the area affected by the requirements change; “recent chgs” \textit{(insufficient data)}

 - Will successive changes to the code in one area lead to non-maintainable code?
New or existing code that is affected; “new/exit code” (insufficient data)

- Will a change to new code (i.e., a change on top of a change) lead to non-maintainable code?

Number of system or hardware failures that would have to occur before the code that implements the requirement would be executed; “fails ex code” (insufficient data)

- Will the change be on a path where only a small number of system or hardware failures would have to occur before the changed code is executed?

Requirements Issues and Functions Factors

- Number and types of other requirements affected by the given requirement change (requirements issues); “other chgs” (insufficient data)

- Are there other requirements that are going to be affected by this change? If so, these requirements will have to be resolved before implementing the given requirement.

- Number of possible conflicts among requirements (requirements issues); “issues”

- Will this change conflict with other requirements changes (e.g., lead to conflicting operational scenarios)

- Number of principal software functions affected by the change; “prin funcs” Not significant.

- How many major software functions will have to be changed to make the given change?

Performance Factors

- Amount of memory space required to implement the change; “space” Significant.

- Will the change use memory to the extent that other functions will not have sufficient memory to operate effectively?

- Effect on CPU performance; “cpu” (insufficient data)

- Will the change use CPU cycles to the extent that other functions will not have sufficient CPU capacity to operate effectively?

Personnel Resources Factors

- Number of inspections required to approve the change; “inspects” Not significant.
- Will the number of requirements inspections lead to excessive use of personnel resources?
 o Manpower required to implement the change; “manpower” Not significant.

- Will the manpower required to implement the software change be significant?
 o Manpower required to verify and validate the correctness of the change; “cost” Not significant.

- Will the manpower required to verify and validate the software change be significant?
 o Number of tests required to verify and validate the correctness of the change; “tests” Not significant.

- Will the number of tests required to verify and validate the software change be significant?

6. Results

This section contains the results of performing the following statistical analyses shown in Tables 6, 7, and 8, respectively. Only those risk factors where there was sufficient data and the results were statistically significant, as indicated in the Risk Factors section, are shown. Some quantitative risk factors (e.g., size of change) are statistically significant; no non-quantitative risk factors (e.g., complexity) are significant.

a. Categorical data analysis on the relationship between CRs with no DRs vs. CRs with failures, using the Mann-Whitney Test; and categorical data analysis on the relationship between CRs with no DRs vs. CRs with DRs only, using the Mann-Whitney Test

b. Dependency check on risk factors, using rank correlation coefficients; and

c. Identification of modules that caused failures as a result of the CR, and their metric values.

6.1 Categorical Data Analysis

Of the original nineteen risk factors, only four survived as being statistically significant (alpha ≤ .05); seven were not significant; and eight had insufficient data to make the analysis (see the Risk Factors section). As Table 6 shows, there are statistically significant results for CRs with no DRs vs. CRs with failures for the risk factors “mods”, “sloc”, “issues”, and “space”. There are also statistically significant results for CRs with no DRs vs. CRs with DRs only for the risk factors “issues” and “space”. Since the value of alpha represents the accuracy of a risk factor in predicting reliability, we use it in Table 6 as a means to prioritize the use of risk factors, with low values meaning high priority. The priority order is: “space”, “issues”, “mods”, and “sloc”.

The significant risk factors would be used to predict reliability and maintainability problems for this set of data and this version of the software. Whether these results would hold for future versions of the software would be determined in validation tests in future research. The finding regarding “mods” does confirm the software developer’s view that this is an important risk
factor. This is the case because if there are many iterations of the change request, it implies that it is complex and difficult to understand. Therefore, the change is likely to lead to reliability and maintainability problems. It is not surprising that the size of the change “sloc” is significant because our previous studies of Space Shuttle metrics have shown it to be important [18]. Conflicting requirements “issues” could result in reliability and maintainability problems when the change is implemented. The on-board computer memory required to implement the change “space” is critical to reliability because unlike commercial systems, the Space Shuttle does not have the luxury of large physical memory, virtual memory, and disk memory to hold its programs and data. Any increased requirement on its small memory to implement a change comes at the price of demands from competing functions.

Table 6: Statistically Significant Results (alpha ≤ .05). CRs with no DRs vs. CRs with failures. Mann-Whitney Test

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Alpha</th>
<th>Median Value CRs with no DRs</th>
<th>Median Value CRs with failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>mods</td>
<td>.0168</td>
<td>.50</td>
<td>4</td>
</tr>
<tr>
<td>sloc</td>
<td>.0185</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>issues</td>
<td>.0038</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>space</td>
<td>.0036</td>
<td>4</td>
<td>231.5</td>
</tr>
</tbody>
</table>

CRs with no DRs vs. CRs with DRs only.

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Alpha</th>
<th>Median Value CRs with no DRs</th>
<th>Median Value CRs with DRs only</th>
</tr>
</thead>
<tbody>
<tr>
<td>issues</td>
<td>.0386</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>space</td>
<td>.0318</td>
<td>4</td>
<td>111.50</td>
</tr>
</tbody>
</table>

mods: Number of modifications of the proposed change.
sloc: Number of lines of code affected by the change.
issues: Number of possible conflicts among requirements.
space: Amount of memory space required to implement the change (full words).

6.2 Dependency Check on Risk Factors

In order to check for possible dependencies among risk factors that could confound the results, rank correlation coefficients were computed in Table 7. Using an arbitrary threshold of .7, the results indicate significant dependencies between “issues” and “mod” and between “issues” and “sloc” for CRs with no DRs. That is, as the number of conflicting requirements increases, the number of modifications and size of the change request increases. In addition, there is a significant dependency between “space” and “issues” for CRs with failures. That is, as the number of conflicting requirements increases, the memory space required to implement the change request increases.
Table 7: Rank Correlation Coefficients of Risk Factors

<table>
<thead>
<tr>
<th></th>
<th>CRs with no DRs</th>
<th>CRs with failures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mods</td>
<td>sloc</td>
</tr>
<tr>
<td>mods</td>
<td>.230</td>
<td>.791</td>
</tr>
<tr>
<td>sloc</td>
<td>.791</td>
<td>.708</td>
</tr>
<tr>
<td>issues</td>
<td>.401</td>
<td>.317</td>
</tr>
</tbody>
</table>

6.3 Identification of Modules that Caused Failures

Requirements change requests may occur on modules with metric values that exceed the critical values. In these cases, there is significant risk in making the change because such modules could fail. Table 8 shows modules that caused failures, as the result of the CRs, had metric values that far exceed the critical values. The latter were computed in previous research [18]. A critical value is a discriminant that distinguishes high quality from low quality software. A module with metric values exceeding the critical values is predicted to cause failures. Although the sample sizes are small, due to the high reliability of the Space Shuttle, the results consistently show that modules with excessive size and complexity lead to failures. Not only will the reliability be low but this software will also be difficult to maintain. The application of this information is that there is a high degree of risk when changes are made to software that has the metric characteristics shown in the table. Thus, these characteristics should be considered when making the risk analysis.

Table 8: Selected Risk Factor Module Characteristics

<table>
<thead>
<tr>
<th>Change Request</th>
<th>Module</th>
<th>Metric</th>
<th>Metric Critical Value</th>
<th>Metric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>change history line count in module listing</td>
<td>63</td>
<td>558</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>non-commented lines of code count</td>
<td>29</td>
<td>408</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>executable statement count</td>
<td>27</td>
<td>419</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>unique operand count</td>
<td>45</td>
<td>83</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>unique operator count</td>
<td>9</td>
<td>33</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>node count (in control graph)</td>
<td>17</td>
<td>66</td>
</tr>
</tbody>
</table>

All of the above metrics exceeded the critical values for all of the above Change Requests.

7. Conclusions

Risk factors that are statistically significant can be used to make decisions about the risk of making changes. These changes affect the reliability and maintainability of the software. Risk factors that are not statistically significant should not be used; they do not provide useful information for decision-making and cost money and time to collect and process. The amount of memory space required to implement the change (“space”), the number of requirements issues
(“issues”), the number of modifications (“mods”), and the size of the change (“sloc”), were found to be significant, in that priority order. In view of the dependencies among these risk factors, “space” would be the choice if the using organization could only afford a single risk factor. We also showed how risk factor thresholds are determined for controlling the quality of the next version of the software.

Statistically significant results were found for CRs with no DRs vs. CRs with failures; in addition, statistically significant results were found for CRs with no DRs vs. CRs with DRs only.

Metric characteristics of modules should be considered when making the risk analysis because metric values that exceed the critical values are likely to result in unreliable and non-maintainable software.

Our methodology can be generalized to other risk assessment domains, but the specific risk factors, their numerical values, and statistical results may vary. Future research will involve applying the methodology to the next version of the Space Shuttle software and identifying the statistically significant risk factors and thresholds to see whether they match the ones identified in this research.

References

