	[image: image1.png]


[image: image1.png]
Independent Verification & Validation Program
	TQ&E Method Evaluation Guidance
	[IVV ##-#-#]

Revision: A
Effective Date:

DRAFT



DOWNLOADED AND/OR HARD COPY UNCONTROLLED

Verify that this is the correct version before use.

	APPROVAL SIGNATURES
	DATE

	<Name>
	
	

	
	
	


	REVISION HISTORY

	Revision
	Description of Change
	Author
	Effective Date

	Basic
	Initial Release
	<Name>
	<Date>

	A
	Updated per IVV 9-1 Rev N, added “Key Concepts” text from IVV 9-1, and added “X.0” goals/objectives from IVV 9-1 to the Specific Guidance table in Section 4.3.
	<Name>
	<Date>

	
	
	
	


	REFERENCE DOCUMENTS

	Document 
	Title

	IVV QM
	NASA IV&V Quality Manual

	IVV 16
	Control of Records

	NPR 1441.1
	NASA Records Retention Schedules

	IVV 9-4
	Project Management

	<Doc ##>
	IV&V Office Concept of Operations

	<Doc ##>
	IV&V Catalog of Methods

	IVV 9-1 Rev N
	IV&V Task Framework


If any process in this document conflicts with any document in NODIS, this document shall be superseded by the NODIS document. Any reference document external to NODIS shall be monitored by the Process Owner for current versioning.
1.0 Purpose
The purpose of this work instruction (WI) is to establish a consistent method for TQ&E evaluation of IV&V Methods for inclusion in the IV&V Catalog of Methods. The IVVO TQ&E Group is responsible for approving Methods for application in IV&V. When defining a new Method, or evaluating a Method change, the evaluator must consider many aspects and points-of-view, including IV&V Office Management, IV&V Program Management and the mission project. This document contains guidance for evaluators and explicitly defines many of these considerations. These guidelines will also be useful to individuals who are tailoring, developing or improving IV&V Methods.

Experience, lessons learned and success stories are rolled into this guidance as appropriate.  
2.0 Scope

This WI applies to all new and updated IV&V Methods included in or considered for inclusion in the IV&V Catalog of Methods.
If any process described in this document conflicts with any part of IVV 9-1 IV&V Technical Framework, Rev N, this document shall be superseded by IVV 9-1 IV&V Technical Framework, Rev N’s content.
3.0 Definitions and Acronyms
Official NASA IV&V roles and terms are defined in the Quality Manual.  Specialized definitions identified in this WI are defined below.

3.1 Duplicate Method
A Duplicate Method is one that fundamentally describes a method already contained in the Method Catalog.  Note that multiple methods that address the same IVV 09-1 goal or objective are not necessarily “duplicates”; the duplication occurs at the analysis steps level, when a proposed method duplicates the analysis steps of a pre-existing method to a significant degree, in which case the new method may be proposed as a replacement of (or approved tailoring for) the existing method.
3.2 Evidence
Data resulting from the application of a Method that can be used to draw an assurance conclusion.
3.3 Manageable Format (as related to evidence)
Evidence is said to be in a Manageable Format if it can easily be placed under Configuration Management and controlled, typically through electronic (rather than physical) CM systems.
3.4 Method Overlap
Method Overlap occurs when one Method’s analysis steps are fully contained within another. This may be resolved by extracting the overlapping analysis steps, and referencing the overlapped Analysis Method by name in the overlapping Method.  Partial overlaps may be resolved by adjusting the analysis steps of both Methods so as to avoid the overlap.
3.5 Method Evaluation Criteria
Criteria for evaluating proposed Methods (or Method revisions) to confirm compliance with relevant goals or objectives as listed in IVV 9-1.  These criteria are found in section 4.2 of this document.  The criteria define, at an abstract level, a breakdown of the criteria any Method must meet to address the stated goal. It is devoid of specific “how’s” and may be structured as sub-goals.  Note that criteria are not yet available for all IVV 9-1 goals; when Methods are to be proposed to address one of the goals for which no guidance is provided, TQ&E will supply such guidance upon request.
3.6 Acronyms
IMS

    
NASA IV&V Management System
NPR

   
NASA Procedural Requirement

QM

     
Quality Manual

WI

      


Work Instruction
4.0 Process Flow Diagram
A process flow diagram does not apply to this WI; however, the following paragraphs provide guidance for a TQ&E evaluation of an IV&V method.
4.1 General Guidance

The following questions are to be considered for any and all new methods and updates to methods (responses to these questions shall be documented by the method evaluation team):
1. Are all mandatory field completed?

2. What portion(s) of the objectives of IVV 09-1 are met?
3. Does the Method provide adequate rigor and intensity of analysis to meet the IV&V Goal(s) objectives?
4. Will the method produce adequate evidence to meet the objectives of the method?
5. Will the method produce evidence in a manageable format?
6. Are the analysis steps described in sufficient detail to establish a shared understanding and communicate to an analyst?
7. Does the Method create a duplicate or overlap with an existing Method?
8. Is additional R&D required prior to implementation of the Method?
9. What risks might need to be managed to execute the Method?
10. Are there any applicability limitations that should be noted?
11. If tools are required to use the method, are the tools available and of sufficient maturity to support the method as planned?

12. Does the method sufficiently address the Key Concepts from IVV 09-1?

13. Does the method sufficiently address the objective listed in the corresponding X.0 section of IVV 09-1?

4.2 Key Concepts (copied from IVV 09-1, Rev N)

The following key concepts should always be considered when performing IV&V:
4.2.1 It is important to examine the software in its interactions with the system of which it is a part
.  It is therefore necessary to develop an understanding of the system, system goals, and operational environment.  Additional views on software and its interactions can be found in Section 1.3 of IEEE 1012 and include environment, operators/users, hardware, and other software.
4.2.2 There are certain perspectives that should be considered during all IV&V analysis.  IEEE 1012 refers to these perspectives as “analysis across all normal and abnormal system operating conditions,” and states that “the dynamics of software and the multitude of different logic paths available within software in response to varying system stimuli and conditions demand that the software V&V effort examine the correctness of the code for each possible variation in system conditions.”  These perspectives may also take the form of the following questions:

1. Will the system’s software do what it is supposed to do?

2. Will the system’s software not do what it is not supposed to do?

3. Will the system’s software respond as expected under adverse conditions?

The intensity
 and rigor2 with which these perspectives are addressed may vary depending on criticality of software or other system/software characteristics.

4.2.3 It is important to recognize that requirements cannot be evaluated in isolation.  Requirements must be evaluated as a set in order to determine that a particular goal or behavior is being met.  The same is true for design elements, code modules, etc.

4.2.4 When a task completes, consider effects on previous analysis results.  “Results and findings from one V&V task may cause previously completed V&V tasks to be analyzed again with the new data.”

4.2.5 Throughout all IV&V analysis, the content under evaluation should be related back to acquirer needs and system goals to ensure that they will be met.  Specific IV&V tasks may require relating the content under evaluation to other information (e.g. higher level requirements, design elements, etc.).  In addition to the task-specific goals and criteria, acquirer needs and system goals should always be considered.

4.2.6 Always focus on the goal of the task and higher level goals of the IV&V Project.  The Technical Framework contained in IVV 09-1 in Section 4.3 (Table 1) is organized according to IV&V goals (or objectives).
  IV&V tasks and approaches should be chosen to meet these objectives as they apply to a particular IV&V Project.  Some of the objectives in the Technical Framework may not be applicable or feasible for a particular IV&V Project due to mission characteristics, IV&V Project characteristics, etc.  All objectives should be considered and, if deemed inappropriate, that decision (and associated rationale) should be documented (this should be documented in the IPEP).  If additional objectives are deemed appropriate, those objectives (and associated rationale) should be documented (this should be documented in the IPEP).  In all cases, when planning and executing an IV&V task, ensure the objective of the task and any higher level objectives are met with respect to key concepts provided above.
4.3 Specific Guidance

Other considerations are specific to the goals from IVV 9-1 that the method is to meet. These considerations are embodied and described in reference methods and the following table.
It is expected that method evaluation team members will apply their own engineering judgment and experience beyond the considerations listed here when performing the Method evaluation.
	Task Framework Reference
	Title
	Goal
	Method Evaluation Criteria
	Other Considerations

	2.0 Verify and Validate Concept Documentation

	2.0
	Verify and Validate Concept Documentation
	Validate the selected solution and ensure that no false assumptions have been incorporated in the solution.
	
	

	2.1
	Reuse Analysis
	Ensure that software planned for reuse meets the fit, form, and function as a component within the new application
	Analyze the developer’s documentation to verify that the original domain of the candidate reuse software will satisfy the domain of the new system (e.g. software integrity level, user needs, operating environment, safety, security, and interfaces). If the developer has performed no domain analysis, perform domain analysis (see IEEE Std 1517-1999) to compare the original domain and the new domain of the candidate reuse software. Verify that developer reuse planning dispositions and documents all domain differences
	

	2.2
	System Architecture Assessment
	Ensure that the system architecture contains the necessary computing related items (subsystems, components, etc.) to carry out the mission of the system and satisfy user needs and operational scenarios or use cases
	Assess the proposed architectural schema for feasibility.  Assess how the proposed architecture satisfies the users’ needs in terms of the user’s requirements.  Examples of requirements are timing, storage, usability, safety, security, and suitability for mission. Assess the appropriateness of the distribution and redundancy of computational items and interfaces relative to system criticality, ability to contain and control hazards, and ability to provide reliable operations. Assess any risks associated with the development or use of new computing technologies or application of computing technologies in a new domain
	

	2.3
	Concept Document Evaluation
	Ensure that the concepts for the operations, mission objectives (including mission retirement), and the system are sufficiently defined as a basis for the engineering and planning of computing related functions
	Validate that the concept documentation satisfies user needs and mission goals and objectives and is consistent with acquisition needs.  Evaluate alternative concepts if available and understand the rationale for selected solutions. Validate that computing related concepts and solutions are technically feasible.  Validate constraints of interfacing systems and constraints or limitations of proposed approaches.

Analyze concept documents to validate that the following satisfy user needs:

· System functions
· End-to-end system performance;  
· Operation and maintenance requirements; and 
· Migration requirements from an existing system, where applicable
	

	2.4
	Feasibility Study Evaluation
	Ensure that feasibility studies provide the results necessary to confidently support the key decisions that drove the need for the study
	Verify that the feasibility study is correct, accurate, and complete. Validate that all logical and physical assumptions (e.g., physical models, business rules, and logical processes), constraints, and user requirements are satisfied
	

	2.5
	Hazard Analysis (Safety Analysis)
	Ensure that known software based hazard causes, contributors, and controls are identified and documented
	Verify that software safety analyses correctly identify the existence of safety critical software according to 4.1 of the NASA Software Safety Standard, NASA-STD-8719.  Verify that the PHA identifies potential system hazards and which proposed computing related subsystems (if known) contribute to, or are needed to control, those hazards.   Verify that general software safety requirements, reliability, and fault tolerance requirements are sufficiently defined to develop, constrain, and guide system designs and levels of computing and communication redundancies
	

	2.6
	Security Analysis
	Ensure that security threats and risks are known and documented and that relevant regulatory requirements are identified
	Review the system owner’s definition of an acceptable level of security risk. Analyze the system concept from a security perspective, and ensure that potential security risks with respect to confidentiality (disclosure of sensitive information/data), integrity (modification of information/data), availability (withholding of information or services), and accountability (attributing actions to an individual/ process) have been identified. Include an assessment of the sensitivity of the information/data to be processed. Analyze security risks introduced by the system itself as well as those associated with the environment with which the system interfaces
	

	3.0 Verify and Validate Requirements

	3.0
	Verify and Validate Requirements
	Ensure the system’s software requirements are high quality (correct, consistent, complete, accurate, unambiguous, and verifiable), and will adequately meet the needs of the system and expectations of its customers and users, considering its operational environment under nominal and off-nominal conditions, and that no unintended features are introduced (see Key Concepts 4.2.1 and 4.2.2, above).
	
	

	3.1
	System Requirements Review
	Ensure that the system requirements are of high quality and are consistent with acquirer needs as they relate to the system’s software
	Review requirements to determine whether they are:
Correct - Verify that performance requirements (e.g., timing, response time, and throughput) allocated to software and user interfaces satisfy user needs.  Validate whether the requirements can be satisfied by the defined technologies, methods, and algorithms defined for the project (feasibility),
Consistent
a. Verify that all terms and concepts are documented consistently
b. Verify that the function interactions and assumptions are consistent and satisfy system requirements and acquisition needs.
c. Verify that there is internal consistency between the system requirements. 
Complete
a. Verify that application specific requirements such as functional diversity, fault detection, fault isolation, and diagnostic and error recovery satisfy user needs
b. Verify that the user's maintenance requirements for the system are completely specified
c. Verify that the migration from the existing system and replacement of the system satisfy user needs
Accurate - Verify that the internal and external interfaces specify the data formats, interface protocols, frequency of data exchange at each interface, and other key performance requirements to demonstrate compliance with user requirements.
Unambiguous
a. Verify that the documentation is legible, understandable, and unambiguous to the intended audience.
b. Verify that the documentation defines all acronyms, mnemonics, abbreviations, terms and symbols.
Verifiable
a. Verify whether objective information that can be demonstrated by testing is provided in the requirements.
b. Verify the consistency of requirements to user needs, Testability.  
a. Review other requirements such as deliverable definitions, listing of appropriate compliance standards and regulations, user needs, etc. for completeness, correctness, and accuracy

	

	3.2
	Traceability Analysis – Requirements
	Ensure that all (in-scope) parent requirements are represented in the appropriate child requirements and that the child requirements do not introduce capability that is not required
	Trace the child requirements to parent requirements and parent requirements to the child requirements.  Analyze identified relationships for correctness, consistency, completeness, and accuracy.
Correctness - Validate that the relationships between each child requirement and its parent requirement are correct
Consistency - Verify that the relationship between the child and parent requirements are specified to a consistent level of detail
Completeness
a. Verify that every child requirement is traceable to a parent requirement with sufficient detail to show compliance with the parent requirement
b. Verify that all (in-scope) requirements related to software are traceable to software requirements
Accuracy - Validate that the system performance and operating characteristics are accurately specified by the traced requirements
	

	3.3
	Software Requirements Evaluation
	Ensure that the software requirements are of high quality and adequately meet the needs of the system with respect to expectations of its customer and users, operational environment, and both functional and non-functional perspectives
	Evaluate the requirements (e.g., functional, capability, interface, qualification, safety, security, human factors, data definitions, user documentation, installation and acceptance, user operation and user maintenance) to determine whether they are correct, consistent, complete, accurate, unambiguous, and verifiable.  
Correct
a. Verify and validate that the software requirements satisfy the system requirements allocated to software within the assumptions, constraints, and operating environment of the system. 
b. Verify that the software requirements comply with applicable standards, references, regulations, policies, physical laws, and business rules.  
c. Validate the sequence of states and state changes.  
d. Validate that the flow of data and control satisfy functionality and performance requirements. 
e. Validate data usage and format.
Consistent
a. Verify that all terms and concepts are documented consistently
b. Verify that the function interactions and assumptions are consistent and satisfy system requirements and acquisition needs.
c. Verify that there is internal consistency between the software requirements and external consistency with the system requirements
Complete
a. Verify that the following elements are in the requirements (e.g. SRS or IRS) within the assumptions and constraints of the system:
1. Functionality (e.g., algorithms, state/mode definitions, input/output validation, exception handling, reporting and logging);
2. Process definition and scheduling;
3. Hardware, software, and user interface descriptions;
4. Performance criteria (e.g., timing, sizing, speed, capacity, accuracy, precision, safety and security);
5. Critical configuration data; and
6. System, device, and software control (e.g., initialization, transaction and state monitoring, and self-testing).
b. Verify that requirements documents (e.g. SRS and IRS) satisfy specified configuration management procedures.
Accurate
a. Validate that the logic, computational, and interface precision (e.g., truncation and rounding) satisfy the requirements in the system environment.
b. Validate that the modeled physical phenomena conform to system accuracy requirements and physical laws
Unambiguous
a. Verify that the documentation is legible, understandable, and unambiguous to the intended audience.
b. Verify that the documentation defines all acronyms, mnemonics, abbreviations, terms and symbols.
Verifiable
a. Each requirement is specified with sufficient detail such that it can be shown to pass or fail some measurable criteria.

	

	3.4
	Interface Analysis – Requirements
	Ensure that the requirements for software interfaces with hardware, user, operator, and other systems are adequate to meet the needs of the system with respect to expectations of its customer and users, operational environment, dependability and fault tolerance, and both functional and non-functional perspectives
	Review interface requirements to determine whether they are:

Correct - Applicable requirement(s) meet all or part of the goals and behaviors of the system, considering expectations of its customer and users, operational environment, dependability and fault tolerance.

Consistent - The interface descriptions are consistent between the software requirements (e.g. SRS) and interface requirements (e.g. IRS). Aspects of behaviors (e.g., preconditions, postconditions, invariants, states, state transitions) are used similarly throughout the requirements (e.g., events that trigger certain transitions captured in one requirement cannot be negated or contradicted by another requirement).

Complete - All interfaces are described (i.e. hardware, user, operator, other software/systems).  Each interface includes data format and performance criteria (e.g., timing, bandwidth, accuracy, safety and security).  All the needed information to completely specify each desired behavior is identified (e.g., all preconditions, post-conditions, and invariants are specified for the described behavior).

Accurate - Each interface provides information with the required accuracy.

Verifiable - Each requirement is specified with sufficient detail such that it can be shown to pass or fail some measurable criteria.
	

	3.5
	Dependability – Requirements
	Ensure that software requirements meet the dependability and fault tolerance required by the system and provide the capability of controlling identified hazards and do not create hazardous conditions
	
	

	4.0 Verify and Validate Test Documentation

	4.0
	Verify and Validate Test Documentation
	Ensure that the collection of test related content will serve as a sufficient means to verify and validate that the implementation meets the requirements and operational need under nominal and off-nominal conditions (see Key Concepts 4.2.1 and 4.2.2 above).
	Test content should be evaluated for requirements coverage and test completeness, considering the extent of the software exercised, the appropriateness of the verification method (e.g. test, analysis, demonstration, inspection) whether the set of inputs used during testing are a fair representative sample from the set of all possible inputs to the software, and whether test inputs include boundary condition inputs, rarely encountered inputs, invalid inputs, inputs related to identified hazards, and safety of the software and system.
	

	4.1
	Test Plan Analysis
	Ensure that the planned tests are sufficient to:

1. Ensure that the software correctly implements system and software requirements in an operational environment under nominal and off-nominal conditions.
2. Ensure that the complete, integrated system complies with its specified system requirements allocated to software and to validate whether the system meets its original objectives.
3. Ensure that the software meets all of the (in-scope) software requirements and is ready to be integrated with system hardware.
4. Ensure that the software correctly implements the software requirements and design as each software component (e.g., units or modules) is incrementally integrated with each other.
5. Ensure that the software components (e.g., units, source code modules) correctly implement software component requirements 
	Acceptance Test Plan Analysis - Ensure that the planned acceptance tests are sufficient to validate that the software correctly implements system and software requirements in an operational environment

Verify that the Acceptance Test Plan complies with project defined test document purpose, format, and content.  Validate that the Acceptance Test Plan satisfies the following criteria: 

1) Test coverage of system requirements; and 
2) Feasibility of operation and maintenance (e.g., capability to be operated and maintained in accordance with user needs).
System Test Plan Analysis - Ensure that the planned system tests are sufficient to verify that the complete, integrated system complies with its specified system requirements allocated to software and to validate whether the system meets its original objectives

Verify that the System Test Plan conforms to project defined test document purpose, format, and content.  Validate that the System Test Plan satisfies the following criteria: 

1) Test coverage of system requirements; 
2) Appropriateness of test methods and standards used; 
3) Feasibility of system qualification testing; and 
4) Feasibility and testability of operation and maintenance requirements
Software FQT Plan Analysis - Ensure that the planned Formal Qualification Tests are sufficient to verify that the software meets all of the (in-scope) software requirements and is ready to be integrated with system hardware

Verify that the Final Qualification Test Plan complies with project defined test document purpose, format, and content.  Validate that the FQT Plan satisfies the following criteria: 

1) Traceable to the software requirements; 
2) External consistency with the software requirements; 
3) Internal consistency; 
4) Test coverage of the (in-scope) software requirements; 
5) Appropriateness of test standards and methods used; 
6) Feasibility of software qualification testing; and
Feasibility of operation and maintenance (e.g., capability to be operated and maintained in accordance with user needs).

Software Integration Test Plan Analysis – Ensure that the planned software integration tests are sufficient to validate that the software correctly implements the (in-scope) software requirements and design as each software component (e.g., units or modules) is incrementally integrated with each other

Verify that the Integration Test Plan complies with project defined test document purpose, format, and content.  Validate that the Integration Test Plan satisfies the following criteria:
1) Compliance with increasingly larger set of functional requirements at each stage of integration; 
2) Assessment of timing, sizing, and accuracy; 
3) Performance at boundaries and under stress conditions; and 
4) Traceable to the system requirements; 
5) External consistency with the system requirements; 
6) Internal consistency; 
7) Test coverage of the (in-scope) software requirements; 
8) Measures of requirements test coverage and software reliability.  
9) Appropriateness of test standards and methods used; 
10) Feasibility of software qualification testing; and 
11) Feasibility of operation and maintenance (e.g., capability to be operated and maintained in accordance with user needs).
Component Test Plan Analysis – Ensure that the planned software component tests are sufficient to validate that the software components (e.g., units, source code modules) correctly implement software component requirements

Verify that the Component Test Plan complies with project defined test document purpose, format, and content.  Validate that the Component Test Plan satisfies the following criteria: 
1) Compliance with design requirements; 
2) Assessment of timing, sizing, and accuracy; 
3) Performance at boundaries and interfaces and under stress and error conditions; and 
4) Traceable to the software requirements and design; 
5) External consistency with the software requirements and design; 
6) Internal consistency between unit requirements; 
7) Test coverage of requirements in each unit; 
8) Measures of requirements test coverage and software reliability and maintainability
9) Feasibility of software integration and testing; and 
10) Feasibility of operation and maintenance (e.g., capability to be operated and maintained in accordance with user needs).
	The relevant step(s) in the reference method should be selected as a function of the goals of the test plan being analyzed. 

	4.2
	Traceability Analysis - Test
	Ensure that valid relationships are defined between the Test Plans, Designs, Cases, and Procedures for test types and documents subject to IV&V test analysis
	Analyze relationships in the Test Plans, Designs, Cases, and Procedures for correctness and completeness.  For correctness, verify that there is a valid relationship between the Test Plans, Designs, Cases, and Procedures.  For completeness, verify that all Test Procedures are traceable to the Test Plans. Perform this tracing only for test types and documents subject to IV&V test analysis
	The goals of this analysis are independent of the level of testing being analyzed (e.g. component, system, interface)

	4.3
	Regression Test Analysis
	Ensure that the planned regression testing to be performed when changes are made to any previously examined software products is sufficient to identify any unintended side effects or impacts of the change on other aspects of the system
	Determine the extent of the testing that must be repeated when changes are made to any previously examined software products.  Assess the nature of the changes to determine potential ripple of side effects and impacts on other aspects of the system
	The goals of this analysis are independent of the level of testing being analyzed (e.g. component, system, interface)

	4.4
	Simulation Analysis
	Ensure that any simulations are sufficiently complete, correct, and accurate to perform the intended testing
	Analyze the simulation for correctness, accuracy and completeness. For correctness, verify that the simulation satisfies the simulation and system requirements For accuracy, validate that the modeled physical phenomena conform to physical laws and that the simulation accurately represents the system environment. For completeness, verify that the simulation has all the functionality necessary to perform the intended testing
	The goals of this analysis are independent of the level of testing being analyzed (e.g. component, system, interface)

	4.5
	Test Case Analysis
	Ensure that the Test Cases under analysis specify the correct test inputs, predicted results, and sets of execution conditions necessary to satisfy their intended test objectives (covering both nominal and off-nominal conditions)
	Verify that the Test Cases under analysis comply with project defined test document purpose, format, and content. Validate that the Test Cases under analysis satisfy the criteria in the associated Test Plan.


	The goals of this analysis are independent of the level of testing being analyzed (e.g. component, system, interface)

	4.6
	Test Procedure Analysis
	Ensure that the Test Procedures under analysis specify the correct sequence of actions necessary for the execution of the tests to satisfy their intended test objectives
	Verify that the Test Procedures under analysis comply with project defined test document purpose, format, and content. Validate that the Test Procedures under analysis satisfy the criteria in the associated Test Plan
	The goals of this analysis are independent of the level of testing being analyzed (e.g. component, system, interface)

	4.7
	Test Design Analysis
	Ensure that the Test Designs under analysis correctly specify the details of the test approach for the covered software feature or combination of software features and identify the associated tests
	Verify that the Test Designs under analysis comply with project defined test document purpose, format, and content. Validate that the Test Designs under analysis satisfy the criteria in the associated Test Plan
	The goals of this analysis are independent of the level of testing being analyzed (e.g. component, system, interface)

	4.8
	Test Environment Assessment
	Ensure that the test environment is sufficiently complete, correct, and accurate to perform the intended testing
	
	The goals of this analysis are independent of the level of testing being analyzed (e.g. component, system, interface)

	5.0 Verify and Validate Design

	5.0
	Verify and Validate Design
	Ensure that the design is a correct, accurate, and complete transformation of the software requirements that will meet the operational need under nominal and off-nominal conditions and that no unintended features are introduced (see Key Concepts 4.2.1 and 4.2.2 above).
	
	

	5.1
	Traceability Analysis – Design
	Ensure that all (in-scope) requirements (e.g. SRS and IRS) are represented in the appropriate elements of the design (e.g. SDD and IDD) and that the design does not introduce capability that is not required
	Review the design to determine whether it is:

Correct - Validate the relationship between each design element and the software requirement.

Consistent - Verify that the relationship between the design elements and the software requirements are specified to a consistent level of detail.

Complete – 

a. Verify that all design elements are traceable upward to the software requirements.  
b. Verify that all (in-scope) software requirements are downward traceable to the design elements responsible for implementation of the software requirement
	

	5.2
	Software Design Evaluation
	Ensure that the design provides the required capability (meeting software architecture and software requirements), is able to reliably meet user needs, and is sufficiently stable to proceed with implementation
	Review the design to determine whether it is:

Correct - Verify and validate that the software design satisfies the software requirements (e.g., functional, capability, interface, qualification, safety, security, human factors, data definitions, user documentation, installation and acceptance, user operation and user maintenance).  Verify that the software design complies with applicable standards, references, regulations, policies, physical laws, and business rules.  Validate the software design sequences of states and state changes using logic and data flows coupled with domain expertise, prototyping results, engineering principles, or other basis.  Validate that the flow of data and control satisfies functionality and performance requirements.  Validate data usage and format.  Assess the appropriateness of design methods and standards.

Consistent - Verify that all terms and design concepts are documented consistently.  Verify that there is internal consistency between the design elements and external consistency with architectural design.

Complete - Verify that the following elements are in the software design (e.g. SDD), within the assumptions and constraints of the system:

1) Functionality (e.g., algorithms, state/mode definitions, input/output validation, exception handling, reporting and logging;
2) Process definition and scheduling;
3) Hardware, software, and user interface descriptions;
4) Performance criteria (e.g., timing, sizing, speed, capacity, accuracy, precision, safety and security);
5) Critical configuration data; and
6) System, device, and software control (e.g., initialization, transaction and state monitoring, and self-testing).
7) Verify that the software design (e.g. SDD) and interface design (e.g. IDD) satisfy specified configuration management procedures.
Accurate - Validate that the logic, computational, and interface precision (e.g., truncation and rounding) satisfy the requirements in the system environment.  Validate that the modeled physical phenomena conform to system accuracy requirements and physical laws.

Unambiguous - Verify that the documentation is legible, understandable, and unambiguous to the intended audience.  Verify that the documentation defines all acronyms, mnemonics, abbreviations, terms, symbols, and design language, if any.

Verifiable - Verify that there are objective acceptance criteria for validating each software design element and the system design.  Verify that each software design element is testable to objective acceptance criteria.
	

	5.3
	Software Architecture Assessment
	Ensure that the proposed software architecture satisfies the needs of the system, and that it is a feasible solution (i.e. will successfully satisfy the needs of the system, while still being practical)
	
	

	5.4
	Interface Analysis – Design
	Ensure that the internal and external software interface designs are provided for all (in-scope) interfaces with hardware, user, operator, software, and other systems and that they provide sufficient detail to enable the development of software components that implement the interfaces.
	Review the interface design to determine whether it is:

Correct - Validate the external and internal software interface design in the context of the system requirements.

Consistent - Verify that the interface design is consistent between the software design (e.g. SDD) and interface design (e.g. IDD).

Complete - Verify that each (in-scope) interface is described and includes data format and performance criteria (e.g., timing, bandwidth, accuracy, safety, and security).  Verify that each (in-scope) interface defines the services to be provided and/or consumed, the preconditions for invoking the interface, the postconditions, and the invariants.  Verify that there are no missing or undefined interfaces or services that need to be supplied or consumed.

Accurate - Verify that each (in-scope) interface provides information with the required accuracy.

Verifiable - Verify that there are objective acceptance criteria for validating the interface design.
	

	5.5
	Algorithm Analysis
	Ensure that complex algorithms have been correctly derived, provide the needed behavior under off nominal conditions and assumed conditions, and that the derivation approach is known and understood to support future maintenance
	Verify the correct implementation of algorithms, equations, mathematical formulations, or expressions. Re-derive any significant algorithms and equations from basic principles and theories. Compare against established references or proven past historical data. Validate the algorithms, equations, mathematical formulations, or expressions with respect to the system and software requirements. Ensure that the algorithms and equations are appropriate for the problem solution. Validate the correctness of any constraints or limitations such as rounding, truncation, expression simplifications, best fit estimations, and non-linear solutions imposed by the algorithms and equations.  Verify the numerical precision of calculations and parameters provides for algorithm stability and preserves the needed precision of algorithm output. Verify that logical branching and conditional statements are appropriate for system states and modes.  Determine conditions and independent variables that could cause the algorithms to fail and verify whether these conditions are plausible
	

	5.6
	Reliability – Design
	Ensure that the design provides the dependability and fault tolerance required by the system and that the design is capable of controlling identified hazards and does not create hazardous conditions
	
	

	6.0 Verify and Validate Implementation

	6.0
	Verify and Validate Implementation
	Verify and validate that the transformations of the design into code, database structures, and related machine executable representations are correct, accurate, and complete, yielding source code that correctly implements requirements, meets the operational need under nominal and off-nominal conditions, and introduces no unintended features (see Key Concepts 4.2.1 and 4.2.2 above).  Also ensure that the source code and documentation (both embedded and stand-alone) are complete and provide an adequate reference for source code maintainability and upgrade.
	
	

	6.1
	Traceability Analysis – Implementation
	Ensure that all (in-scope) elements of the design (e.g. SDD and IDD) are represented in the appropriate source code components and that the source code does not introduce capability that is not required
	Correct - Validate the relationship between the source code components and design elements(s).

Consistent - Verify that the relationship between source code components and design elements are specified to a consistent level of detail.

Complete
a. Verify that all source code components are traceable upward to the design elements
b. Verify that all (in-scope) design elements are downward traceable to the source code components responsible for implementing specific design elements
	

	6.2
	Source Code and Documentation Evaluation
	Ensure that the source code components can reliably perform required capabilities under nominal and off-nominal conditions, perform no undesired behaviors, and that the documentation (both embedded and stand-alone) can facilitate code maintenance
	Correct
a. Verify and validate that the source code component implements the associated elements of the software design and the software requirements (e.g., functional, capability, interface, qualification, safety, security, human factors, data definitions, user documentation, installation and acceptance, user operation and user maintenance).
b. Verify that the source code components comply with applicable standards, references, regulations, policies, physical laws, and business rules
c. Validate the source code component sequences of states and state changes
d. Validate that the flow of data and control satisfy functionality and performance requirements
e. Validate data usage and format, including units of measure.
f. Assess the appropriateness of coding methods and standards
Consistent
a. Verify that all terms and source code are documented consistently
b. Verify that there is internal consistency between the source code components
c. Validate external consistency with the software design and requirements
Complete
a. Verify that the following elements are in the source code, within the assumptions and constraints of the system:
1. Functionality (e.g., algorithms, state/mode definitions, input/output validation, exception handling, reporting and logging;
2. Process definition and scheduling;
3. Hardware, software, and user interface descriptions;
4. Performance criteria (e.g., timing, sizing, speed, capacity, accuracy, precision, safety and security);
5. Critical configuration data;
6. System, device, and software control (e.g., initialization, transaction and state monitoring, and self-testing.
7. Safety-related aspects (may be documented in various sources, but commonly are captured in the requirements, hazard reports, fault tree analysis reports, and/or failure modes and effect analysis reports.
b. Verify that the source code documentation satisfies specified configuration management procedures
Accurate
a. Validate the logic, computation, and interface precision (e.g., truncation and rounding) in the system environment
b. Validate that the modeled physical phenomena conform to system accuracy requirements and physical laws
Unambiguous
a. Verify that the documentation is legible, understandable, and unambiguous to the intended audience
b. Verify that the documentation defines all acronyms, mnemonics, abbreviations, terms and symbols
Verifiable
a. Verify that there are objective acceptance criteria for validating each source code component
b. Verify that each source code component is testable against objective acceptance
	

	6.3
	Interface Analysis – Implementation
	Ensure that the source code that interfaces with hardware, user, operator, software, and other systems reliably provides the right services and data and receives data for internal use
	Correct - Validate the external and internal software interface code in the context of systems requirements.  Verify that the source code correctly implements interface preconditions, postconditions, and invariants.

Consistent - Verify that the interface code is consistent between source code components and to external interfaces (i.e., hardware, user, operator, and other software).

Complete - Verify that each interface is described and includes data format and performance criteria (e.g., timing, bandwidth, accuracy, safety, and security).  Verify that the source code provides required services across the interfaces.

Accurate - Verify that each interface provides information with the required accuracy.

Verifiable - Verify that there are objective acceptance criteria for validating the interface code.
	

	6.4
	Test Results Analysis
	Ensure that test results are as expected (per the corresponding plans, cases, procedures, design) and the impacts of any discrepancies are understood
	Use the developer's integration test results. Verify that the test results trace to the test criteria established by the test traceability in the test planning documents.  Document discrepancies between actual and expected results. 
	The goals of this analysis are independent of the level of testing being analyzed (e.g. component, system, interface)

	6.5
	Software Hazard Tolerance Analysis
	Ensure that the source code components provide the dependability and fault tolerance required by the system and that the source code is capable of controlling identified hazards and does not create hazardous conditions
	
	

	6.6
	Traceability Analysis – Requirements-&-Implementation
	
Ensure that all (in-scope) requirements (e.g. SRS and IRS) are represented in the appropriate source code components and that the source code does not introduce capability that is not required.       
	Correct - Validate the relationship between the source code components and the software requirement.

Consistent - Verify that the relationship between source code components and the software requirements are specified to a consistent level of detail.

Complete
a. Verify that all source code components are traceable upward to the software requirements
b. Verify that all (in-scope) software requirements are downward traceable to the source code components responsible for implementation of the software requirement.
	

	7.0 Validate and Verify Operations and Maintenance Content

	7.0
	Validate and Verify Operations and Maintenance Content
	Ensure operating plans and procedures are correct and usable, ensure that new constraints, changes in the operating environment, proposed software system changes, and their impact on the software are understood and appropriately addressed, and to ensure that anomalies that are discovered during operation are understood and appropriately addressed
	
	

	7.1
	Disaster Recovery Plan Review
	Ensure that the disaster recovery plan is adequate to restore critical operation of the system in the case of an extended system outage
	Review plans and verify that the following items meet the operational recovery needs of the user organization and stakeholders:

1) Identification of the disaster recovery team and a contact list.
2) Recovery operation procedures.
3) Procedure for establishing an alternative site including voice and data communications, mail, and support equipment.
4) Plans for replacement of computer equipment.
5) Establishment of a system backup schedule.
6) Procedures for storage and retrieval of software, data, documentation, and vital records off-site.
7) Logistics of moving staff, data, documentation, etc.
	

	7.2
	Operational Evaluation
	Ensure deployment readiness and operational readiness of the software
	Operational Evaluation shall include examining the results of operational tests, audit reviews, and anomaly reports. Verify that the software and user instructions are at a suitable point of correctness for deployment and correct for site specific configurations
	

	7.3
	Operating Procedure Evaluation
	Ensure that the operating procedures are consistent with the user documentation and conform to the system requirements
	
	

	7.4
	Anomaly Evaluation
	Ensure that the effect of software operation anomalies are understood and appropriately addressed
	
	

	7.5
	Training Documentation Evaluations
	Ensure that training documentation provides adequate guidance to system operators and users to enable correct use of the system and that this documentation is consistent with the system design and implementation
	Evaluate the training materials and procedures for completeness, correctness, readability, and effectiveness.  Verify that user and operator instructions are consistent with the system design and implementation as well as the scope of system testing.  Verify that training documentation does not prescribe system use that has not been verified for both nominal and off-nominal conditions.
	

	7.6
	Migration Assessment
	Ensure that the software requirements and implementation address 1) specific migration requirements, 2) migration tools, 3) conversion of software products and data, 4) software archiving, 5) support for the prior environment, and 6) user notification
	
	

	7.7
	Retirement Assessment
	For software retirement, ensure that the installation package addresses:  1) software support, 2) impact on existing systems and databases, 3) software archiving, 4) transition to a new software product, and 5) user notification
	
	

	7.8
	User Documentation Evaluation
	Ensure that user documentation is consistent with the implementation and capable of communicating the use of user-accessible system functions
	Evaluate the user documentation for its completeness, correctness, and consistency with respect to requirements for user interface and for any functionality that can be invoked by the user.  The review of the user documentation for its readability and effectiveness shall include representative end users who are unfamiliar with the software. Employ the user documentation in planning and acceptance test that is representative of the operational environment
	


5.0 Metrics
Any metrics associated with this WI are established and tracked within the NASA IV&V Metrics Program.

5.0 Records
There are no records associated with this WI.
� IEEE Std 1012-2004


� IEEE Std 1012-2004.  “Intensity includes greater scope of analysis across all normal and abnormal system operating conditions.  Rigor includes more formal techniques and recording procedures.”


� For the purposes of this SLP, no distinction between “goal” and “objective” is intended.


� This framework is commonly referred to as “the WBS” (work breakdown structure).  While the content of the framework may or may not match what would be recognized as a WBS based on common guidance (e.g. the Project Management Body of Knowledge), this type of content meets NASA IV&V needs for defining work, and has come to be known as “the WBS”.





1 of 30

