FY10 SARP Research Topics
31. Requirements

3*1.1. Automated requirements tracing tool

5‡1.2. Ontologies for standards and requirements

6*1.3. Formal methods for hardware and software specifications

7*‡1.4. Requirements traceability tool

8*‡1.5. Software Requirements and Scenarios for System Safety

92. Resource estimation

9*2.1. Assurance cost/benefit analysis tool

112. Resource Estimation

11‡2.2. Communicate the value of Software Assurance

123. Model-based engineering

12*3.1. Architecture tools & techniques

133.2. Interoperability of frameworks and models

14*‡3.3. Assurance of model-based software

153.4. State analysis

163.5. VV&A of models and simulations

173.6. UML quality metrics

194. Standards compliance

19*4.1. Software safety case approach and method

22*‡4.2. Standards compliance tools

23*4.3 Support for assessment of current implementation of NASA requirements from NPR 7123.1, 7150.2, 7120.5 and STD 8739.8 and 8719.13.

255. Testing

255.1. Random testing techniques.

265.2. Functional/integration testing tool/frameworks for Flex/Flash based Rich Internet Applications.

28*5.3. Test coverage metrics

316. Reliability estimation

316.1. Software reliability metrics and tool

337. Maintenance project assurance tools& techniques

337.1. Tools & techniques for software maintenance

348. Generic

348.1. Rapid prototyping

358.2. Delphi Knowledge Elicitation Method w/ Check List Analysis

368.3. Fault/Failure Tolerance Analysis

379. Autonomous Failure Detection

379.1. Autonomous Failure Detection, Isolation and Recovery/Integrated systems health monitoring tools

3810. Complex electronics

38*10.1. NASA standard on complex electronics

3910.2. VV&A of complex electronics

4010.3. Reconfigurable computing assurance

4110.4. Methodology for moving complex electronics from class D to class A

4211. Metrics

4211.1. Reliability metrics

4311.2. Test coverage metrics

4411.3. Metrics for complex electronics development

4511.4. UML quality metrics

46*11.5. Tool for software and software assurance metrics

4712. Process Improvement

4712.1. CMMI in the small.

4812.2. Tool for process evaluation

Indicates topics which may have a higher priority.
*Indicates some work may be on-going related to this topic.
‡Indicates a new or updated topic.

	Topic:
	1. Requirements

	Need:
	*1.1. Automated requirements tracing tool

Automated requirements tracing and certification (to NPR 7150.2) tool. A solution or tool to help develop and maintain traceability to requirements for certification purposes. This tool would be one that automates the process of certification of a software system to meet NPR 7150.2 Software Engineering Requirements, Constellation software engineering/development requirements, and Ground Operations Project(s) software engineering/development requirements.

Constellation and Ground Operations and Project level documents are being created. These documents are being warehoused in Cradle and Windchill. Individual documents may have traceability matrices in the appendices of the documents that serve to trace back to parent requirements. Need bi-directional traceability in one tool. The projects at KSC are concerned with meeting NPR 7150.2 as well as the Constellation Program requirements for 1) successful product development and 2) meeting the NPR 7150.2 requirement for CMMI assessment purposes.

	Relevant domain(s):
	Ground Operations projects, implementing Constellation Program requirements.

	Project(s) that would use the proposed tool/solution:
	Ground Operations projects

	Current tool/solution in use and its shortcomings:
	Cradle and Windchill is the configuration management tool for the requirements and the documents. These two tools are used for all of Constellation, and apparently do not offer the ability to create traceability matrices or tables between the documents.

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	ASAP

	Language requirement:
	English... actually SQL Server would be recommended as the database development tool.

	Size or scale requirements:
	An enterprise level database server other than MS Access.

	Required deliverables:
	A tool to help develop and maintain traceability to requirements for certification purposes, whether it be for CMMI or proof that Agency or Program level software engineering requirements are met.

	Other useful information:
	Whoever is the PI for this would have to have intimate knowledge of NPR 7150.2, the Constellation Software Engineering requirements, the Ground Operations software Engineering requirements etc.

	Topic:
	1. Requirements

	Need:
	‡1.2. Ontologies for standards and requirements

	Relevant domain(s):
	 Organizations extracting information from standards and requirements for traceability, model development and assurance assessment

	Project(s) that would use the proposed tool/solution:
	 Orion software requirements traceability; any project for extracting, matching, mapping and analyzing requirements

	Current tool/solution in use and its shortcomings:
	Manual parsing and extraction from text and documents is the norm. Ontologies used for problem report analysis and model extraction for safety analysis need to be extended for standards and requirements.

	Constraints that might influence the research work plan:
	Mapping into XML and UML is desirable. Ontology to support text extraction must be enhanced with hierarchical taxonomy and thesaurus capabilities.

	Timeline that the proposed tool/solution must support:
	Orion PDR is slipped to summer 2010. Requirement traceability is an ongoing need during the lifecycle.

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	Ontology data embedded in a text extraction tool, to be used in requirements traceability or other model extraction tasks. Analysis of relationship to requirements terminology standards.

	Other useful information:
	

	Topic:
	1. Requirements

	Need:
	*1.3. Formal methods for hardware and software specifications

	Relevant domain(s):
	

	Project(s) that would use the proposed tool/solution:
	

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	1. Requirements

	Need:
	*‡1.4. Requirements traceability tool

Tools are needed to mechanize the manual process for establishing and tracing links between contractor software requirements specifications (SRSs) and NASA parent documents. The tool must mechanize and assist coverage, completeness and gap analysis. It must also identify relationships to sequence diagrams and use cases and support bi-directional traceability analysis. Individual documents may have traceability matrices in appendices, which trace back to parent requirements.

	Relevant domain(s):
	Avionics projects, implementing Constellation Program requirements

	Project(s) that would use the proposed tool/solution:
	Orion requirements traceability; also NASA and contractor avionics requirements traceability tasks and projects.

	Current tool/solution in use and its shortcomings:
	Traceability matrices or tables are being created and inspected manually. This is a cumbersome process that does not scale for avionics.

	Constraints that might influence the research work plan:
	NASA and contractor project timelines need to be considered. Requirements management is an ongoing need during the project life cycle

	Timeline that the proposed tool/solution must support:
	ASAP and continuing through Orion project life cycle.

	Language requirement:
	Use SQL database and text processing technology.

	Size or scale requirements:
	An enterprise level database server.

	Required deliverables:
	Prototype tool, evaluation and demonstration

	Other useful information:
	

	Topic:
	1. Requirements

	Need:
	*‡1.5. Software Requirements and Scenarios for System Safety

There is a need for better models and methods to support definition of system hazards and safety constraints and their relationship to software-based controls and software safety constraints. Behavior of system elements affects software requirements, including hazards and constraints. Operational threads and scenarios are needed to show how the system elements are involved. These scenarios can also drive off-nominal and stress testing for safety. There is a need for better integration between these scenarios, constraints and functional and interface requirements.

	Relevant domain(s):
	NASA and contractor software, systems engineering and acquisition independent insight/overs

	Project(s) that would use the proposed tool/solution:
	Orion insight/oversight; also NASA IV&V; also NASA and contractor requirements development and management.

	Current tool/solution in use and its shortcomings:
	Nancy Leveson’s SpecTRM tool and Systems-Theoretic Accident Modeling and Process (STAMP) can be used to analyze safety constraints and controls. STAMP safety constraints and dynamic safety control structures need to be better integrated with system reference models and scenarios.

	Constraints that might influence the research work plan:
	NASA and contractor project timelines need to be considered. Requirements management is an ongoing need during the project life cycle, but early analysis is more cost effective

	Timeline that the proposed tool/solution must support:
	Orion PDR is slipped to summer 2010. Analysis for early design reviews is most cost effective.

	Language requirement:
	Compatibility with appropriate UML and SysML diagrams.

	Size or scale requirements:
	For large projects and safety critical software.

	Required deliverables:
	Model integration mappings; Definition of SpecTRM outputs that can drive requirements and relate to scenarios and operational views; Demonstration case.

	Other useful information:
	

	Topic:
	2. Resource estimation

	Need:
	*2.1. Assurance cost/benefit analysis tool

Software estimation tools: for both software and complex electronics. A tool to provide a risk-based assessment of required assurance level. Some people associate software class with level of risk, but many people don't make that association. We've tried to research acceptable risk levels for the potential loss of missions of various sizes and the potential loss of people and property. NASA guidelines for acceptable levels of risk exposure.

	Relevant domain(s):
	Projects at the concept phase can benefit from providing good estimates of required level of effort. Help identifying the appropriate level of assurance would primarily affect the projects that do not have IV&V.

SMA organization, Software Engineers, Project Manager, software community.

	Project(s) that would use the proposed tool/solution:
	Projects at the concept phase can benefit from providing good estimates of required level of effort. Help identifying the appropriate level of assurance would primarily affect the projects that do not have IV&V.

All projects with SA support.

Constellation and its sub-projects.

	Current tool/solution in use and its shortcomings:
	Unofficial rough risk exposure diagrams have been created to identify likelihood of loss versus value. Acceptable loss is based on range safety limits for casualty expectations and rough NASA assurance guidelines. Risk exposure diagrams are a way to compare one project against another to see if assurance levels are consistent for similar levels of risk exposure.

There are many cost and resource estimating tools but none specifically designed for software assurance tasks which include software safety, software reliability, software quality, software verification and validation, and software independent verification and validation. No tools cover complex electronics. Tool should also allow for different software efforts based on software classification.

	Constraints that might influence the research work plan:
	Unfortunately it is difficult to relate loss of human life to a dollar value to compare safety-critical to mission-critical levels. It is also difficult to assign a dollar value to NASA's reputation. It would be helpful to identify in one place how much NASA is willing to risk human life, how much NASA is willing to risk the loss of X dollar property, how much NASA is willing to risk loss of an X dollar mission, and how much NASA is willing to risk its reputation. Not everything needs to be 99.9999% reliable at a 95% confidence level. The difficulty is identifying the appropriate level and making it consistent across a variety of projects.

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	Standard desktop application

	Size or scale requirements:
	

	Required deliverables:
	Estimating tool

	Other useful information:
	CMMI v1.2
Complex Electronics Guidebook

	Topic:
	2. Resource Estimation

	Need:
	‡2.2. Communicate the value of Software Assurance

	Relevant domain(s):
	Rational/evidence would help the process of convincing managers to fund and support software assurance activities.

	Project(s) that would use the proposed tool/solution:
	I believe small and medium development projects may feel the pressure to skip assurance activities more than large development projects.

	Current tool/solution in use and its shortcomings:
	I’ve seen some estimates of the cost of identifying software faults early verses late and estimates of the number of faults found per thousand source lines of code. The question is how much software assurance results in identification of potential failures early enough to be a cost benefit.

	
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	It’s an ongoing issue.

	Language requirement:
	Metrics would most likely target C/C++ programs because they are more common.

	Size or scale requirements:
	Results should relate to project size and complexity. Since software project sizes seem to increase by an order of magnitude each decade, the cost benefit analysis keeps changing. We need to keep updating research, use current examples, and plan for future growth.

	Required deliverables:
	Simple tools to support clarity of communication

	Other useful information:
	While there is already work in progress on one aspect of the topic there are other aspects that should be addressed, such as how metrics from the last decade translate into estimates for the next decade. There are also questions about which software assurance activities are most effective. It would help to have person or a small group gather previous research results, organize the information into one package, and identify any missing components.

	Topic:
	3. Model-based engineering

	Need:
	*3.1. Architecture tools & techniques

(1) architecture frameworks, (2) product line architectures, (3) architecture description languages and modeling, and (4) reference architectures.

A tool to analyze a software architecture to develop a claims -evidence diagram would be helpful. Everyone seems to want to see a list of the project-specific evidence/artifacts required to say assurance is complete. The lowest level of the evidence diagram should be a set of required artifacts. The diagram provides a scope of effort. This information would also help assurance personnel explain what projects are buying and why.

	Relevant domain(s):
	Architecture

	Project(s) that would use the proposed tool/solution:
	NASA flight software projects

Software assurance personnel would likely make use of software assurance claims-evidence diagrams throughout the project life cycle, as a road map.

	Current tool/solution in use and its shortcomings:
	Architecture Design and Analysis Language (AADL) and Rational Software Architect (RSA).

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	A claims-evidence diagram template compliant with NASA standards that can be tailored would be the delivered product. An interactive version that facilitates project-specific modifications would be excellent (but not expected).

	Other useful information:
	

	Topic:
	3. Model-based engineering

	Need:
	3.2. Interoperability of frameworks and models

Ensure interoperability and validity of the suite of frameworks and models adopted for Orion flight software development and assurance, so that several types of models are integrated, unambiguous and consistent. Identify technical and process deficiencies that make it difficult to design, implement and evaluate software with the suite of tools.

	Relevant domain(s):
	Orion flight software development

	Project(s) that would use the proposed tool/solution:
	Orion flight software engineering

	Current tool/solution in use and its shortcomings:
	The problem is that there are a variety of tools and modeling approaches: Model Driven Architecture, Object Oriented Analysis and Design, Unified Modeling Language, System Reference Models and the Department of Defense Architecture Framework (DoDAF). The tools and their representations need to be evaluated for overlaps and gaps, mappings and incompatibilities.

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	Preliminary release by Orion CDR (Aug, 2009), follow up report and release by end of Spiral 6 (June 2010)

	Language requirement:
	C++ and Matlab

	Size or scale requirements:
	Medium to large scale systems

	Required deliverables:
	A method and associated prototype tools

	Other useful information:
	Data access and tool access are constraints.

	Topic:
	3. Model-based engineering

	Need:
	*‡3.3. Assurance of model-based software
Practices, requirements, and guidance need to be developed for the assurance of model-based software. Software being developed by first generating a model, and subsequently using an auto-coder to generate the software based upon the model is becoming more common. The traditional software assurance approach must be updated to account for these changes. For instance, it is not effective to manually review the large quantities of code that may be generated?

	Relevant domain(s):
	Flight software assurance, SMA organization, Software Engineers and project manager

	Project(s) that would use the proposed tool/solution:
	The current Constellation program includes its projects and sub-elements (Ex. Ares/CLV/CEV etc…)

	Current tool/solution in use and its shortcomings:
	Potential conflicts with existing software assurance requirements

 Currently there are no standard metrics available. Solutions are achievable but resources are limited.
Benefits are better use of SA limited resources and better planning for supporting in the areas of Mission Assurance.

	Constraints that might influence the research work plan:
	No specific timeline. However, model-based development is currently in use and becoming more popular

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	UML is the most common

	Size or scale requirements:
	No

	Required deliverables:
	A guidebook or standard, perhaps followed by procedures and checklists

	Other useful information:
	

	Topic:
	3. Model-based engineering

	Need:
	3.4. State analysis

State Analysis was originally developed at JPL for the MDS project and perhaps has overtaken reference architecture and is a stand-alone approach to model-based engineering. Of course, there are several languages out there that can be used to perform model-based engineering; State Analysis may be the most overlooked approach. Consider using SpecTRM as a tool for capturing State Analysis artifacts.

	Relevant domain(s):
	Model-based engineering

	Project(s) that would use the proposed tool/solution:
	

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	3. Model-based engineering

	Need:
	3.5. VV&A of models and simulations

	Relevant domain(s):
	

	Project(s) that would use the proposed tool/solution:
	

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	3. Model-based engineering

	Need:
	3.6. UML quality metrics

A tool to analyze software architecture to develop a claims -evidence diagram would be helpful. Everyone seems to want to see a list of the project-specific evidence/artifacts required to say assurance is complete. The lowest level of the evidence diagram should be a set of required artifacts. The diagram provides a scope of effort. This information would also help assurance personnel explain what projects are buying and why. UML models do not follow the standard software development model. Checklists and metrics are needed to measure the quality of the UML model.

	Relevant domain(s):
	SMA organization, Software Engineers and project manager

	Project(s) that would use the proposed tool/solution:
	The current Constellation program includes its projects and sub-elements (Ex. Ares/CLV/CEV etc…)

	Current tool/solution in use and its shortcomings:
	Currently there are no standard metrics available. Solutions are achievable but resources are limited.
Benefits are better use of SA limited resources and better planning for supporting in the areas of Mission Assurance.

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	3. Model-based engineering

	Need:
	

	Relevant domain(s):
	

	Project(s) that would use the proposed tool/solution:
	

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	4. Standards compliance

	Need:
	*4.1. Software safety case approach and method

Developers and reviewers need a way to evaluate software-intensive system safety by looking directly at the arguments supporting safety claims, not by confirming that the correct development process was followed. For example, a systems engineer needs to ensure that the argument that a flight abort decision is correct and is based on a correct analysis of the probabilities of false positives and false negatives from the abort detection system (among other things). In European aerospace applications, this kind of assurance for safety critical systems is often provided by safety cases, but our practice does not include them.

The concept of a “safety case” (a subset of the more general “dependability case”) has been in wide use in, especially, European safety-critical industries (power, aviation, rail, etc), but has not made inroads into the US, in particular, has not been adopted by NASA and its contractors. As a result, there is understandable widespread reluctance to commit to their use within NASA. In fact, while there has been much discussion of Safety Case in CxP, it has generated considerable controversy and no work has been done by NASA on the concept; it remains without even a single case study here despite its widespread adoption abroad. Safety cases (in the form of dependability cases) were extremely controversial in the development of CxP 70065 Computing Systems Requirements, with many stakeholders believing that safety cases are at too low a maturity level to include as CxP requirements. Thus they were included only in the form of guidelines (for example, “G/L-31-004 Dependability Case. Each project should develop and maintain a Dependability Case to show, at different stages of a project's life cycle, how computing system dependability will be, is being, and has been achieved.”). We suggest research on safety cases to raise the maturity level through a “shadow application” in a CxP safety-critical flight context. Such research is needed to:

(1) Show a concrete example of a safety case for a representative safety-critical NASA system in which software is a major functional component.

(2) Indicate the efficacy of a safety case for software-intensive systems – the value stemming from a “product” oriented perspective that a safety case offers, as a complement to the “process” oriented perspective on development practices (e.g., ISO, CMMI).

(3) Reveal the level of effort it takes to develop and to review a safety case - the longer term goal is to develop estimators of the cost, effort and skills required for NASA’s use of safety cases for software-intensive systems.

(4) Indicate the extent to which existing practices will already have gathered the information from which a safety case can be assembled and how to modify existing practices to fully support safety cases.

(5) Offer guidance on how to develop and review a safety case for software-intensive systems - the longer term goal is to develop courseware for this.

	Relevant domain(s):
	Safety-critical software-intensive systems

	Project(s) that would use the proposed tool/solution:
	Many - Constellation in particular. One of the outcomes of the research should be a characterization of the kinds of NASA applications to which Safety Cases are applicable and appropriate.

	Current tool/solution in use and its shortcomings:
	There are some graphical support tools available in Europe that may be considered for a NASA pilot project. There are also some tutorial materials available in Europe. However, the concept of safety cases, and the applicability of these support materials to NASA systems, is considered untested by CxP.
The shortcoming of NOT using safety cases is the lack of a product-oriented perspective on whether and why a system fulfills its safety requirements. In particular, it is difficult to evaluate a range of dynamically developed product-oriented safety queries, such as, "What are the likelihood and consequences of a worst case single-even upset in the state estimation computation during initial ascent stage?” that could arise during design or implementation reviews. Another consequence of not producing safety cases is that it is more difficult to produce arguments to justify or refute claims that a proposed new system to ensure safety does in fact do so (and not simply decrease overall safety by adding error-prone complexity).

	Constraints that might influence the research work plan:
	Access to relevant information.

	Timeline that the proposed tool/solution must support:
	It would be ideal if the work could be initiated in time to apply to Constellation designs.

	Language requirement:
	

	Size or scale requirements:
	A modest-sized example is preferable as the one to start with. Too small (e.g., a “voting” algorithm) and it would fail to encompass the full range of factors. Too large (e.g., the entire avionics system) and it would be too large an effort to serve as a convenient pilot study.

	Required deliverables:
	End products: a safety case for the system studied, a record of the effort, skills, data needs, etc. that it took to develop that safety case, lessons learned/guidance to help future developers of safety cases. Perhaps a Safety Case Developers Guide or Tutorial; these might be modeled closely after Euro counterparts, with the example replaced by a NASA case study example.

	Other useful information:
	The discussion of safety cases within CxP was conducted in the context of Level 2 requirements. The guidelines are contained in CxP 70065 - Computing Systems Requirements. Thus if safety cases turn out to be a valid and useful safety analysis tool for NASA, it can be expected that they will be widely applicable at least within Constellation.

	Topic:
	4. Standards compliance

	Need:
	*‡4.2. Standards compliance tools

Tools that fulfill requirements for each process area and generate a report for use by NASA Centers NPR 7123.1, 7150.2, 7120.5 and STD 8739.8 and 8719.13 that cover both software, including complex electronics, and systems engineering.

	Relevant domain(s):
	All NASA and contractor software, complex electronics and system engineering covered that should follow NPR 7123.1, 7150.2, and 7120.5 and STD 8739.8 and 8719.13, but that haven’t selected a tool yet.

	Project(s) that would use the proposed tool/solution:
	All NASA and contractor software, complex electronics and system engineering projects constrained by NPR 7123.1, 7150.2, and 7120.5 and STD 8739.8 and 8719.13

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	Schedules. Changing NPRs. Changing personnel.

	Timeline that the proposed tool/solution must support:
	Timelines from Constellation and Space Shuttle schedules and the impacts from that need to be considered.

	Language requirement:
	English

	Size or scale requirements:
	The product of this effort needs to be workable for small, medium, and large scale efforts.

	Required deliverables:
	Evaluations and recommendation of tools.

	Other useful information:
	

	Topic:
	4. Standards Compliance

	Need:
	*4.3 Support for assessment of current implementation of NASA requirements from NPR 7123.1, 7150.2, 7120.5 and STD 8739.8 and 8719.13.

NASA and contractor software and system engineering efforts should follow NPR 7123.1, 7150.2, and 7120.5 and STD 8739.8 and 8719.13. There is a need for information that supports decision-making at the Agency level regarding updates/changes to the standards and requirements.

	Relevant domain(s):
	

	Project(s) that would use the proposed tool/solution:
	This effort is focused on supporting the Agency’s upcoming review of requirements and standards, mining the lessons learned and proposing possible guidance on usage as well as implementation.

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	There is an expectation that the proposal would demonstrate how the team will work together.

	Timeline that the proposed tool/solution must support:
	Delivery date of ‘final’ report - March 30, 2010

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	· Review & Summary of previous Center Gap Analyses

· Current Gap Analyses for at least 3 Centers, preferably all of them

· A review of the Audit findings and any trends noted in compliance and non-compliance

· A report on any barriers to compliance and how they worked around

· A report on how the NPRs and standards have altered work activities and product performance as well as an evaluation of the cost/benefit of the requirements/standards would be expected.

These reports can be combined or separate, preliminary, draft versions are expected to be discussed and reviewed periodically.

Deliverables should include a planned monthly status exchange.

	Other useful information:
	Priority will be given to:

· Proposals that involves collaboration from at least 3 centers,

· proposals that include both manned and robotics focused centers,

· Proposals with high FTE ratio (strong and appropriate civil servant involvement),

· Proposals whose planned deliverables demonstrate a balance of qualitative and quantitative results

	Topic:
	5. Testing

	Need:
	5.1. Random testing techniques.
Better techniques for random testing of software (stochastic testing, with feedback to bias operation & parameter choice); particularly, both setting up random testing frameworks, and moving from pure random testing towards verification and complete coverage

	Relevant domain(s):
	Testing

	Project(s) that would use the proposed tool/solution:
	File system testing for JPL missions and software projects would use such an approach. Other modules amenable to automated testing (possibly IPC, resource arbitration, etc.) would also likely benefit.

	Current tool/solution in use and its shortcomings:
	Currently, ad hoc one-time solutions are employed, where random testing is used at all. Some tools exist for Java, but most flight software (where this would be most critical) is not Java code.

	Constraints that might influence the research work plan:
	Area is known to be difficult; exhaustive testing is generally impossible, and for rich properties evaluating "how well" a system has been tested, or directing testing towards errors is known to be a very hard problem. Effort of specification and automation for each application is potentially large.

	Timeline that the proposed tool/solution must support:
	Mostly long-term, though upcoming missions would benefit before software integration if possible.

	Language requirement:
	Tools applying to C/ C++ would be most useful for flight code.

	Size or scale requirements:
	Most applicable to relatively small, self-contained (10K lines or less, known API) modules.

	Required deliverables:
	A framework for random testing would be most important, with a working prototype being quite desirable. End product would be methodology and tools.

	Other useful information:
	

	Topic:
	5. Testing

	Need:
	5.2. Functional/integration testing tool/frameworks for Flex/Flash based Rich Internet Applications.
Given the emergence of Web 2.0, developers are pushing the limits of what browsers can do. The original intent of a web browser was to deliver documents to end-users, not applications and thus, protocols and standards to meet this need where designed as such. Request-Response patterns have moved from full-up page refresh models to incremental interactions similar to thick-client applications. As users begin to demand more and more functionality delivered via web browsers, new challenges are emerging for developers. To add further complexity, there is a lack of commonality between different browser vendors and browsers are being used in a manner in which they not originally intended to do. Because of this, building browser-based applications with Flex is becoming a popular option for Rich Internet Application development.

Rich Internet Applications (RIA) are web applications that run in web browsers but bypass the page refresh model just as AJAX does but require a Flash runtime. Given the market penetration of the Flash Player in market-share leading browsers, this is highly available foundation to build solid RIA, especially in intranet applications which are commonly deployed within NASA. The benefits of using Flex is that a developer can write and test code for one platform, the flash runtime, as opposed to a plethora of browsers/platforms which increase complexity, implementation time and drive up cost.

As with most software development, testing applications is very important to ensure software quality and user acceptance. For Flex based applications, there are tools/frameworks readily available to do unit testing, but there are limited options for doing integration and functional testing. For AJAX based RIA applications, openqa.org released an excellent open source project called Selenium. Selenium allows QA engineers to test modules written with AJAX technologies. Given the popularity of the Flex application development, a good open source product to perform a similar function is lacking.

One COTS product that exists to do functional/application testing is Mercury QuickTest Pro. This is a valuable tool but very expensive. Also, this tool only works in Internet Explorer as it is implemented as an ActiveX plug-in.

Another COTS product is iMacro from iOpus. This is another available option that is far less expensive than Mercury QTP, but is not as robust.

Because of the widespread adoption of Flex based RIA development and the increasing importance of testing for applications, what is needed is a quality integration/functional testing framework such as Selenium for Flex RIA that is open-source and not tied to proprietary standards and protocols.

	Relevant domain(s):
	Any Flex/Flash based RIA development effort within the agency. Potentially the solution could address testing of Java and ActiveX applets as well but this is not as critical.

	Project(s) that would use the proposed tool/solution:
	Any Constellation project doing Flex web application development. Currently, there are efforts underway within Constellation that are using Flex RIA approaches.

	Current tool/solution in use and its shortcomings:
	Available tools to test Flash/Flex based apps are COTS, and tend to be very expensive such as Mercury QuickTest Pro. Lesser expensive tools, such as iMacros tend to use non-robust techniques such as Image Recognition and XY coordinates to locate GUI elements. Also, available tools tend to be proprietary.

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	None

	Language requirement:
	Flash, Flex, AIR

	Size or scale requirements:
	Typically small to medium sized client applications

	Required deliverables:
	A toolkit/framework similar to Selenium for recording macros to perform functional testing of Flex/Flash based applications

	Other useful information:
	

	Topic:
	5. Testing

	Need:
	*5.3. Test coverage metrics

There is a need for better test coverage metrics, and guidance on their application to NASA software.

Test coverage metrics play a prominent role in V&V and certification of safety-critical software outside of NASA. The purpose of coverage metrics is to indicate when sufficient testing has been performed and where additional testing is needed. Currently, commercial avionics software is developed and tested to the DO178B standard. This standard mandates requirements-driven testing with MCDC test coverage for the highest-criticality applications.

NASA needs test coverage metrics appropriate to its safety- and mission-critical software. It is unlikely that the MCDC coverage metric by itself is appropriate for NASA applications, for several reasons that are discussed below. Therefore the need is twofold: a better test coverage metric or metrics and guidance on their application.

	Relevant domain(s):
	High assurance (Class A and B) software.

	Project(s) that would use the proposed tool/solution:
	Constellation and NASA safety- and mission-critical software. For example, the Ares I Abort Fault Detection, Notification and Response (AFDNR) Software system. Results could also influence the commercial aviation standard.

	Current tool/solution in use and its shortcomings:
	There is no NASA standard or detailed guidance on test coverage metrics comparable to that provided in the commercial aviation world by DO178B and related documents. For example, the Constellation Software Verification and Validation Plan lists several standard coverage metrics but does not provide guidance in their application.

The DO178B coverage metric for Class A software, MCDC, is unlikely to be appropriate for NASA applications. The amount of testing required to attain the coverage mandated by this metric is onerously expensive, and furthermore the survey by Kelly Hayhurst et al. showed widely varying levels of satisfaction with its effectiveness in revealing software bugs.

There is a growing understanding of the inadequacies of the MCDC coverage metric itself. Like any metric, it is vulnerable to deliberate approaches to thwart its intent (notably by designing the program structure so as to minimize the testing required to attain the level of coverage, but at increased risk of masking latent bugs). The FAA provides guidance to mitigate this problem. More worrisome are recently reported results showing that adoption of well-intentioned program structures can also lead to this same phenomenon. Furthermore, MCDC does not address coverage issues specific to reactive systems; and it is unknown how it should be extended to other non-standard forms of software (e.g., to model-based reasoning systems, in which there is growing interest in Constellation and NASA).

	Constraints that might influence the research work plan:
	To the extent that the work plan included an effort to experiment with proposed metrics on past NASA software developments, and especially if there was a desire to retroactively estimate how adherence to the proposed metric would compare with actual past practices, then the following constraint would apply: Difficulty in obtaining historical data including test plans and results, in order to evaluate the effectiveness of proposed metrics.

The diversity of development processes, development platforms, and software architectures will likely preclude the universal adequacy of a single coverage metric.

Unconstrained development methods can defeat any coverage metric. Thus, we expect that coverage metrics will impose constraints on development methods.

	Timeline that the proposed tool/solution must support:
	For example, Ares AFDNR; related ground-based diagnostics systems (ISHM).

	Language requirement:
	Generally no specific language requirement. The solutions (coverage metrics and guidance on their application) should be language-neutral, although specific tools for implementing the coverage metrics will be language-specific. There may emerge a need for different metrics depending on the class of language – e.g., graphical languages and their accompanying code generation may demand a different coverage metric to that required by traditional programming languages; model-based reasoning systems may also represent a distinct class with distinct metric needs.

Ideally, coverage metrics should also be able to take into account the results of other verification techniques, such as static analysis, so as to avoid duplication of effort where coverage has already been demonstrated.

	Size or scale requirements:
	The coverage metrics must be applicable to real NASA or FAA applications. The concern is that in the area of testing, coverage metrics that demonstrate excellent results on “toy” or small-scale applications may not scale to real applications. Thus there is a need to demonstrate applicability to applications of at least 10KSLOC in size, preferably more.

	Required deliverables:
	Clear, English-language definitions of new test coverage metrics;
Discussion of their range of applicability;
Justification of their use in place of, or together with, existing coverage metrics;
Specific guidance on how to apply them--for example, through a tutorial;
Discussion of development techniques that enable application of these metrics; and factors that can defeat them;
Indication of tools, technologies and procedures that can implement them;
What to do in the absence of a comprehensive tool solution.
Ultimately we will need tools that implement the coverage metrics for C, C++ and any other languages expected to be used for developing safety- and mission-critical software. However, we recognize that these products may be more appropriate for commercial development following delivery of the needed research results.

	Other useful information:
	Specific guidance on how to apply them--for example, through a tutorial.

	Topic:
	6. Reliability estimation

	Need:
	6.1. Software reliability metrics and tool

Estimating reliability is extremely difficult. There isn't time to run all the possible tests -- in many cases all inclusive testing would take longer than the anticipated software lifetime. We need a way to identify key tests. Simulating an operational scenario sometimes isn't good enough, but it's the best we can do prior to a full-up more expensive test round. Customers don't want to pay for the full-up live-data operation tests to prove reliability; they want to depend on the less expensive, faster simulation tests. The question is how to prove a simulation of an operational environment is good enough. For control center software, one technique is to record all live inputs for control center systems during operations, so new systems using the same data will have test cases. The recorded data includes good data as well as dropouts, bad data points, and all the imperfections we want to test. Sometimes the problem isn't in the test data but in the way the system is used under operational conditions. The system may be left idle for long periods or may have to reset and start over after running multiple verification tests. Different operators may select options faster/slower or in an order not previously tested. We need a way to identify a test set that covers significant variations on operator interactions. How do we identify and test variations in the way people operate/setup/command a software system?

A tool to analyze a software architecture to develop a claims -evidence diagram would be helpful. Everyone seems to want to see a list of the project-specific evidence/artifacts required to say assurance is complete. The lowest level of the evidence diagram should be a set of required artifacts. The diagram provides a scope of effort. This information would also help assurance personnel explain what projects are buying and why.

Currently IEE-982 identifies a shopping list of hundreds of reliability metrics – what is needed is a core set.

	Relevant domain(s):
	Software Assurance and Software Engineering

	Project(s) that would use the proposed tool/solution:
	Constellation (Orion and Ares)

 With each new safety-critical or mission-critical software release, reliability must be proven. NASA projects at multiple centers are trying to better estimate reliability and better define test sets.

Software assurance personnel would likely make use of software assurance claims-evidence diagrams throughout the project life cycle, as a road map.

	Current tool/solution in use and its shortcomings:
	Running the systems for hours to calculate a Mean Time Between Failures did not give a true indication of software performance. Running a set of mission scenarios in a simulation environment also failed to completely replicate an operational state. Tools to document process have been tried at a high level, but they don't seem to capture all the details. An automated or partially automated method of checking software for possible combinations of operator interactions could help if the possible interactions can be narrowed to a testable set or if the testing can be automated.

We're lacking a claims-evidence diagram template developed to comply with NASA standards.

	Constraints that might influence the research work plan:
	Creating an automated tool is dependent on first identifying a concept and design. Near-term work should focus on a plan as the primary delivery.

All the needed information should be available to create a claims-evidence template.

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	For any interactive tools (the assurance level tool or the claims evidence diagram) a standard desktop application is needed.

An automated tool for defining test cases would most likely first target C/C++ applications.

	Size or scale requirements:
	Both the assurance level and claims-evidence diagrams should address the needs of small to large projects. The automated tool should target software subsystems that allow operator interaction, taking into account the effect on the rest of the software system.

	Required deliverables:
	A well-researched and tested method of identifying crucial variations in operator interactions should be documented as the delivered product. An automated tool for C/C++ code would be excellent (but not expected).

A claims-evidence diagram template compliant with NASA standards that can be tailored would be the delivered product. An interactive version that facilitates project-specific modifications would be excellent (but not expected).

	Other useful information:
	The identification of tests is not a small effort. Months of research will most likely be required to come up with a workable plan.

Diagramming necessary components of the software assurance process based on NASA requirements, standards, and guidelines will probably require several weeks of effort. Producing example templates for various projects will require significantly more effort, but will provide a way to debug the template.

	Topic:
	7. Maintenance project assurance tools& techniques

	Need:
	7.1. Tools & techniques for software maintenance
Innovative tools and techniques for software maintenance. For example, ways to easily determine the different modules of a system that will be impacted by a proposed requirement, design, or source code change and the extent of the impacts to those modules. Also related, ways to easily determine the minimum selection of test cases and other assurance techniques that need executed to have assurance for a system modification. The tools and techniques developed need to integrate with, extend or functionally replace developer tools and techniques for requirements, design, code, and test artifact management since maintenance personnel are going to use developer provided artifacts as a starting point of the maintenance effort.

	Relevant domain(s):
	Deployed systems under maintenance--ground systems, software driven satellite systems, etc.

	Project(s) that would use the proposed tool/solution:
	Any project undergoing maintenance, which includes any multi-year satellite mission, human space flight, etc.

	Current tool/solution in use and its shortcomings:
	Current methods primarily use configuration control boards to review changes and manual effort on the part of the maintainer to search for, assess, and update relevant artifacts. Regression test efforts typically involve a core regression test suite or a rerun of all system tests. Automation of the manual processes and reduction or fine tuning of the assurance (mostly test) activities is needed.

	Constraints that might influence the research work plan:
	The effort should make sure it minimizes human effort and error while maintaining project artifacts for continued human comprehension and use in future projects.

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	The end product is likely a combination of tools and processes for increasing assurance of systems under maintenance while decreasing human effort for such systems.

	Other useful information:
	

	Topic:
	8. Generic

	Need:
	8.1. Rapid prototyping
Rapid prototyping of assurance technologies to increase the productivity of software development and case studies of the application of assurance techniques and tools to detect defects early in the life cycle.

	Relevant domain(s):
	Mission flight software assurance

	Project(s) that would use the proposed tool/solution:
	Multi-mission System Architectural Platform (MSAP)

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	Working prototype and "how-to" guidebooks

	Other useful information:
	Clearly defining why this research will help NASA to manage the complexity of system design

	Topic:
	8. Generic

	Need:
	8.2. Delphi Knowledge Elicitation Method w/ Check List Analysis
Continue development into a verification tool. A Delphi knowledge elicitation method was developed within NASA. The method requests input from a group of domain experts. It has been applied on a limited number of topics including batteries, valves and electric circuits. Results can be used to generate checklists which engineers can use to assist in identifying possible hazards.

	Relevant domain(s):
	Any engineering discipline

	Project(s) that would use the proposed tool/solution:
	

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	8. Generic

	Need:
	8.3. Fault/Failure Tolerance Analysis

Fault Tolerance analysis is routinely done as part of safety analysis but a systematic method of performing it and tools to implement the method need to be developed. Internally developed process flow at Ames has significantly assisted in identification of hazards/issues. Refining this process flow method into a software tool that generates usable data and generate reports that doesn’t need modification is needed.

	Relevant domain(s):
	Fault/failure identification and analysis

	Project(s) that would use the proposed tool/solution:
	

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	9. Autonomous Failure Detection

	Need:
	9.1. Autonomous Failure Detection, Isolation and Recovery/Integrated systems health monitoring tools

Autonomous Failure Detection, Isolation and Recovery/ Integrated systems health monitoring tools

	Relevant domain(s):
	

	Project(s) that would use the proposed tool/solution:
	

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	10. Complex electronics

	Need:
	*10.1. NASA standard on complex electronics
NASA Standard on Complex Electronics Development and Implementation requirements for engineering and assurance.

	Relevant domain(s):
	SMA organization, Software Engineers and project manager

	Project(s) that would use the proposed tool/solution:
	The current Constellation program includes its projects and sub-elements (Ex. Ares/CLV/CEV etc…)

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	10. Complex electronics

	Need:
	10.2. VV&A of complex electronics
Including commercial software, including embedded software and development environments; System on a Chip.

	Relevant domain(s):
	

	Project(s) that would use the proposed tool/solution:
	Low Impact Docking System is currently using CE software assurance research products. Other projects likely to use them include ISS to CEV Communications Adapter (ICCA).

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	10. Complex electronics

	Need:
	10.3. Reconfigurable computing assurance

Reconfigurable computing is the upcoming trend. Research needs to be done on what the best way is to assure the safety and quality of these devices.

	Relevant domain(s):
	SMA organization, Software Engineers and project manager

	Project(s) that would use the proposed tool/solution:
	The current Constellation program includes its projects and sub-elements (Ex. Ares/CLV/CEV etc…)

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	10. Complex electronics

	Need:
	10.4. Methodology for moving complex electronics from class D to class A

Much of the software and complex electronics is being developed as class “D” for Constellation. A defined methodology must be created for moving this “software” from class “D” to class “A”.

	Relevant domain(s):
	SMA organization, Software Engineers and project manager

	Project(s) that would use the proposed tool/solution:
	The current Constellation program includes its projects and sub-elements (Ex. Ares/CLV/CEV etc…)

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	11. Metrics

	Need:
	11.1. Reliability metrics

See 6.1. A core set of software reliability metrics

	Relevant domain(s):
	

	Project(s) that would use the proposed tool/solution:
	

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	11. Metrics

	Need:
	11.2. Test coverage metrics

See 5.3 Test coverage metrics

	Relevant domain(s):
	

	Project(s) that would use the proposed tool/solution:
	

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	11. Metrics

	Need:
	11.3. Metrics for complex electronics development

Develop metrics to measure the quality of complex electronic devices as they are being developed.

	Relevant domain(s):
	SMA organization, Software Engineers and project manager

	Project(s) that would use the proposed tool/solution:
	The current Constellation program includes its projects and sub-elements (Ex. Ares/CLV/CEV etc…)

	Current tool/solution in use and its shortcomings:
	Currently there are no standard metrics available.

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	Short term need is for the high volume of contractor’s deliverable documents. Long term is for Constellation operation.

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	11. Metrics

	Need:
	11.4. UML quality metrics
See 3.2 Interoperability of frameworks and models, 3.3. Model-based engineering, 3.4. State analysis and 3.5 VV&A of models and simulations

	Relevant domain(s):
	

	Project(s) that would use the proposed tool/solution:
	

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	11 Metrics

	Need:
	*11.5. Tool for software and software assurance metrics
See 12.2 Tool for process evaluation

	Relevant domain(s):
	

	Project(s) that would use the proposed tool/solution:
	

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	12. Process Improvement

	Need:
	12.1. CMMI in the small.

	Relevant domain(s):
	

	Project(s) that would use the proposed tool/solution:
	

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

	Topic:
	12. Process Improvement

	Need:
	12.2. Tool for process evaluation

Tool for process evaluation based on set of criteria from CMMI or other process improvement practices. The tool should also provide method for data management allowing developers to easily record data during development life cycles.

	Relevant domain(s):
	SMA organization, Software Engineers, Project Manager, software community who employs CMMI.

	Project(s) that would use the proposed tool/solution:
	The current Constellation program includes its projects and sub-elements (Ex. Ares/CLV/CEV etc…)

	Current tool/solution in use and its shortcomings:
	

	Constraints that might influence the research work plan:
	

	Timeline that the proposed tool/solution must support:
	Short term need is for the Constellation Program.

	Language requirement:
	

	Size or scale requirements:
	

	Required deliverables:
	

	Other useful information:
	

