	Topic:
	6. Reliability estimation

	Need:
	6.1. Software reliability metrics and tool

Estimating reliability is extremely difficult.  There isn't time to run all the possible tests -- in many cases all inclusive testing would take longer than the anticipated software lifetime.  We need a way to identify key tests.  Simulating an operational scenario sometimes isn't good enough, but it's the best we can do prior to a full-up more expensive test round.  Customers don't want to pay for the full-up live-data operation tests to prove reliability; they want to depend on the less expensive, faster simulation tests.  The question is how to prove a simulation of an operational environment is good enough.  For control center software, one technique is to record all live inputs for control center systems during operations, so new systems using the same data will have test cases.  The recorded data includes good data as well as dropouts, bad data points, and all the imperfections we want to test.  Sometimes the problem isn't in the test data but in the way the system is used under operational conditions.  The system may be left idle for long periods or may have to reset and start over after running multiple verification tests.  Different operators may select options faster/slower or in an order not previously tested.  We need a way to identify a test set that covers significant variations on operator interactions.  How do we identify and test variations in the way people operate/setup/command a software system?
A tool to analyze a software architecture to develop a claims -evidence diagram would be helpful.  Everyone seems to want to see a list of the project-specific evidence/artifacts required to say assurance is complete.  The lowest level of the evidence diagram should be a set of required artifacts.  The diagram provides a scope of effort.  This information would also help assurance personnel explain what projects are buying and why.

Currently IEE-982 identifies a shopping list of hundreds of reliability metrics – what is needed is a core set.

	Relevant domain(s):
	Software Assurance and Software Engineering

	Project(s) that would use the proposed tool/solution:
	Constellation (Orion and Ares)

 With each new safety-critical or mission-critical software release, reliability must be proven.  NASA projects at multiple centers are trying to better estimate reliability and better define test sets.

Software assurance personnel would likely make use of software assurance claims-evidence diagrams throughout the project life cycle, as a road map.



	Current tool/solution in use and its shortcomings:
	Running the systems for hours to calculate a Mean Time Between Failures did not give a true indication of software performance.  Running a set of mission scenarios in a simulation environment also failed to completely replicate an operational state.  Tools to document process have been tried at a high level, but they don't seem to capture all the details.  An automated or partially automated method of checking software for possible combinations of operator interactions could help if the possible interactions can be narrowed to a testable set or if the testing can be automated.

We're lacking a claims-evidence diagram template developed to comply with NASA standards.

	Constraints that might influence the research work plan:
	Creating an automated tool is dependent on first identifying a concept and design.  Near-term work should focus on a plan as the primary delivery.

All the needed information should be available to create a claims-evidence template.

	Timeline that the proposed tool/solution must support:
	

	Language requirement:
	For any interactive tools (the assurance level tool or the claims evidence diagram) a standard desktop application is needed.

An automated tool for defining test cases would most likely first target C/C++ applications.

	Size or scale requirements:
	Both the assurance level and claims-evidence diagrams should address the needs of small to large projects. The automated tool should target software subsystems that allow operator interaction, taking into account the effect on the rest of the software system.

	Required deliverables:
	A well-researched and tested method of identifying crucial variations in operator interactions should be documented as the delivered product.  An automated tool for C/C++ code would be excellent (but not expected).

A claims-evidence diagram template compliant with NASA standards that can be tailored would be the delivered product.  An interactive version that facilitates project-specific modifications would be excellent (but not expected).

	Other useful information:
	The identification of tests is not a small effort.  Months of research will most likely be required to come up with a workable plan.

Diagramming necessary components of the software assurance process based on NASA requirements, standards, and guidelines will probably require several weeks of effort.  Producing example templates for various projects will require significantly more effort, but will provide a way to debug the template.


