	Topic:
	4. Standards compliance

	Need:
	4.1. Software safety case approach and method

Developers and reviewers need a way to evaluate software-intensive system safety by looking directly at the arguments supporting safety claims, not by confirming that the correct development process was followed. For example, a systems engineer needs to ensure that the argument that a flight abort decision is correct and is based on a correct analysis of the probabilities of false positives and false negatives from the abort detection system (among other things). In European aerospace applications, this kind of assurance for safety critical systems is often provided by safety cases, but our practice does not include them.

The concept of a “safety case” (a subset of the more general “dependability case”) has been in wide use in, especially, European safety-critical industries (power, aviation, rail, etc), but has not made inroads into the US, in particular, has not been adopted by NASA and its contractors. As a result, there is understandable widespread reluctance to commit to their use within NASA. In fact, while there has been much discussion of Safety Case in CxP, it has generated considerable controversy and no work has been done by NASA on the concept; it remains without even a single case study here despite its widespread adoption abroad. Safety cases (in the form of dependability cases) were extremely controversial in the development of CxP 70065 Computing Systems Requirements, with many stakeholders believing that safety cases are at too low a maturity level to include as CxP requirements. Thus they were included only in the form of guidelines (for example, “G/L-31-004 Dependability Case. Each project should develop and maintain a Dependability Case to show, at different stages of a project's life cycle, how computing system dependability will be, is being, and has been achieved.”). We suggest research on safety cases to raise the maturity level through a “shadow application” in a CxP safety-critical flight context. Such research is needed to:

(1) Show a concrete example of a safety case for a representative safety-critical NASA system in which software is a major functional component.

(2) Indicate the efficacy of a safety case for software-intensive systems – the value stemming from a “product” oriented perspective that a safety case offers, as a complement to the “process” oriented perspective on development practices (e.g., ISO, CMMI).

(3) Reveal the level of effort it takes to develop and to review a safety case - the longer term goal is to develop estimators of the cost, effort and skills required for NASA’s use of safety cases for software-intensive systems.

(4) Indicate the extent to which existing practices will already have gathered the information from which a safety case can be assembled and how to modify existing practices to fully support safety cases.

(5) Offer guidance on how to develop and review a safety case for software-intensive systems - the longer term goal is to develop courseware for this.

	Relevant domain(s):
	Safety-critical software-intensive systems

	Project(s) that would use the proposed tool/solution:
	Many - Constellation in particular. One of the outcomes of the research should be a characterization of the kinds of NASA applications to which Safety Cases are applicable and appropriate.

	Current tool/solution in use and its shortcomings:
	There are some graphical support tools available in Europe that may be considered for a NASA pilot project. There are also some tutorial materials available in Europe. However, the concept of safety cases, and the applicability of these support materials to NASA systems, is considered untested by CxP.
The shortcoming of NOT using safety cases is the lack of a product-oriented perspective on whether and why a system fulfills its safety requirements. In particular, it is difficult to evaluate a range of dynamically developed product-oriented safety queries, such as, "What are the likelihood and consequences of a worst case single-even upset in the state estimation computation during initial ascent stage?” that could arise during design or implementation reviews. Another consequence of not producing safety cases is that it is more difficult to produce arguments to justify or refute claims that a proposed new system to ensure safety does in fact do so (and not simply decrease overall safety by adding error-prone complexity).

	Constraints that might influence the research work plan:
	Access to relevant information.

	Timeline that the proposed tool/solution must support:
	It would be ideal if the work could be initiated in time to apply to Constellation designs.

	Language requirement:
	

	Size or scale requirements:
	A modest-sized example is preferable as the one to start with. Too small (e.g., a “voting” algorithm) and it would fail to encompass the full range of factors. Too large (e.g., the entire avionics system) and it would be too large an effort to serve as a convenient pilot study.

	Required deliverables:
	End products: a safety case for the system studied, a record of the effort, skills, data needs, etc. that it took to develop that safety case, lessons learned/guidance to help future developers of safety cases. Perhaps a Safety Case Developers Guide or Tutorial; these might be modeled closely after Euro counterparts, with the example replaced by a NASA case study example.

	Other useful information:
	The discussion of safety cases within CxP was conducted in the context of Level 2 requirements. The guidelines are contained in CxP 70065 - Computing Systems Requirements. Thus if safety cases turn out to be a valid and useful safety analysis tool for NASA, it can be expected that they will be widely applicable at least within Constellation.

