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Quantum Adiabatic Evolution Algorithms for
NP-Hard problems
and quantum spin glasses

Phase transitions and Computational Complexity

One of the central open questions in the field of quantum computing is that of an existence of an efficient quantum algorithms
for solving classically intractable instances of an optimization problem. Our project is devoted to the theoretical analysis of
performance of quantum adiabatic evolution algorithm (QAA) proposed by Farhi and coworkers for NP-hard optimization
problems. The algorithm is similar to simulated annealing but instead of thermal cooling the system at zero temperature is
subjected to external magnetic field of slowly decreasing magnitude. Adiabatic theorem predicts that the system will remain in
its ground state as the magnetic field is changed provided that the rate of change is sufficiently small. The performance of
quantum adiabatic algorithm can be studied empirically by simulating it on classical computer or performing experiments with
real systems that implement certain types of classically intractable hard optimization problems. Because worst-case
complexity of QAA for the hardest constraint satisfaction problems is likely to be exponential it is of fundamental theoretical
and practical interest to address the question if there is a large set of instances of the NP-hard optimization problem that are
intractable on classical computer but solvable on quantum computer via QAA. This problem directly related to studying a
typical complexity of QAA and compare it with typical complexity of classical computation for the same set of instances. We
address this problem by studying analytically the performance of QAA for randomly generated instances of Constraint
Satisfaction problems that lie at the heart of theory of NP-completeness and can be formulated using an ensemble of random
“hypergraphs”. Many properties of randomly generated instances almost surely (i.e. with probability that tends to 1) depend
only on the ratio of the number of constraints to the number of variables. One such property is satisfiability (can all constraints
be satisfied), the probability of which drops sharply from 1 to 0 when as the constraint-to-variable ratio exceeds some
threshold. Many classical algorithms exhibit a threshold behavior as well. In satisfiable phase there is a critical threshold,

below which solution can be found in linear time, and exponentially long above the threshold..



A measure of complexity of the problem is the logarithm of the time required to find a solution
(divided by N -- the number of variables) as shown in the figure below.
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Recent work on properties of random K-SAT
problem (M Mezard, G Parisi, R Zecchina,
Science 2002) produced phase diagram with
roughly 3 phases: replica-symmetric (RS)
satisfiable and replica symmetry-broken (RSB),
statisfiable and unsatisfiable. RSB phase
corresponds to exponentially large number of
clusters of solutions separated by high barriers as
shown in figure to the left.



Replica method for the analysis of dilute-infinite range quantum spin problems

We use replica method to study properties of the phase transition and critical behavior in quantum random K-
SAT problem that will shed the light on its quantum complexity properties. Ealier work has been confined
exclusively to zero temperature classical problem. We developed new mathematical technique that allows for
the first time to extend previous methods to include quantum effects (degree of "quantumness" is detemined by
the external magnetic field which controls tunneling. The limit of zero magnetic field is classical). The order
parameters (aka relevant dynamical variables) that we had to introduce to describe the quantum problem reveal
extreme richness of the problem. For classical problem, the order parameter is the probability distribution of
magnetizations (average values of variables in thermal equilibrium) for replica-symmetric phase, whereas in
RSB phase it is the distribution of distributions of magnetizations (fluctuations of magnetizations at each site
can no longer be neglected). For quantum case, the order parameter is the distribution of distributions of

magnetizations already at replica-symmetric level. Special properties of K-SAT model allowed us to obtain
the

order parameter in simplified form in the limit of small magnetic fields. Although replica-symmetric ansatz is
not always valid for zero-temperature classical problem, it predicts phase transition between satisfiable and
unsatisfiable phases with good precision [8]. We have analyzed the quantum problem at zero temperature. We
have recently demonstrated that the true phase transition happens only at zero temperature and zero magnetic
field that is in classical problem; in quantum regime it is replaced by a smooth crossover.
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Numerical calculation of the complexity of Quantum
Adiabatic Algorithm
for NP-hard problems

In order to verify our theoretical findings we started a project in collaboration with
Peter Young (UCSC) to study numerically the minimum gap in the quantum
adiabatic evolution algorithm applied to random NP-complete problems with
unique satisfying assignment. We are using Quantum Monte Carlo simulations by
computing asymptotic of a two-time correlation function for a spin on imaginary
time axis. This approach allows to understand the complexity of the quantum
adiabatic algorithm for much large sizes than those accessible by direct integration
of time-dependent Schrodinger equation for a quantum spin system. We applied
this method to random Exact Cover problem with unique satisfying assignment. For
a range of sizes, N < 128, where the classical Davis-Putnam algorithm shows
exponential complexity, the quantum adiabatic algorithm shows polynomial
complexity. The bottleneck of the algorithm is an isolated avoided crossing point of
a Landau-Zener type (collision between the two lowest energy levels only). We
currently study the modification of the Quantum Monte Carlo that will allow to
study the algorithm complexity for much larger sizes N.
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QMC results for the gap between the
ground state and the first excited state as a
function of the control parameter of
quantum adiabatic evolution algorithm for
one instance of Exact Cover problem
(unique satisfying assignment) with N=64.
The region around the minimum value of
the 1s blown up in the inset.

A log-log plot of the median of the minimum gap
obtained by QMC for instances of exact cover with a
unique satisfying assignment (USA) as a function of
the number of bits N up to N=128. From the
satisfactory straight line fit, it is seen that the median
decreases as a power law, with m = 0.73. The number
of instances is 50 except for N=64 for which it is 45.
The inset shows a log-linear plot. The pronounced
curvature shows that the behavior is not exponential
for this range of sizes, in contrast to the classical
algorithms for this problem.




